22 A World of Interacting
Objects

The two examples in this chapter illustrate the "world of interacting objects’ that is
typical of a program built using classes. They give you a practical model for an
alternative to the "top-down" design approach used extensively in Part 11l. The
examples also illustrate slightly simplified, informal versions of some of the schemes
that are commonly used to document more elaborate object based programs.

Thefirst example, "RefCards”, is alittle bit like the example in Section 17.3. In that
example, a program manipulated "customer records' that contained data such as
customer name, and amount ordered. Actually, that program manipulated a single
structure in memory; the rest of the records werein afile. When arecord was needed,
it got loaded into memory. Now we can use things like an insane of a standard "list"
class to hold a collection of records in memory, transferring these records to and from
disk only when the program finishes and is restarted. The data records this time are
"reference cards' — the sort of thing used to keep references to papers when you are
doing scientific research. These records contain things like "authors names', "paper
title", "journal", and "page numbers'. Although the RefCards program has some
similarities to the earlier example, the use of classes in its design results in an
implementation that is beginning to show a quite distinct structure.

The second example is an object-based reworking and elaboration of the
"information retrieval" example from Section 18.3. That version of the program
allowed the user to build up files containing newspaper articles, with an index based on
apredefined set of keywords defined by an initialized data array. It used two programs.
One added data to the file; the other performed single searches. Now we need
something more general.

The program is to allow the user to define the "vocabulary” of keywords (as in the
earlier example, it is actually a vocabulary of concepts as several different words can
map onto a single concept used in the index). This vocabulary is to be extendible. If
the user thinks of a new concept, or an additional word that maps onto an existing
concept, then the system must allow this word to be added. This makes the system

22

Refcards example

I nfostore example

726

A World of Interacting Objects

more flexible. It is not limited like the original to scientific articles. If you want a
collection of travel articles, you simply make up a suitable vocabulary and start saving
data.

The programs are also to be integrated. Vocabulary changes, article addition, and
searches are al to be handled by the one program. The previous separate programs
performed single functions — article addition, or search. The new program does not
have a single function that can serve as a starting point for design. Instead, it gets built
from objects — a "user interaction" object, a "vocabulary" object, and an "info store"
object.

22.1 REFCARDS

Scholars doing research used to keep their records on "reference cards'. Although
computer data bases and file systems are now common, some people still use the old
cards and many of the simpler computer systems use "cards' as a metaphor in their
design. Reference cards would contain a number of datafields including: authors, title
of paper, journal name, issue number, page number, year of publication, keywords, and
possibly an abstract. Computer based versions have the advantage that you can easily
search a collection of such "cards" checking each to identify those that contain a
particular keyword, or a specified author.

Specification

The RefCard program will work with collections of "reference card" records. Thereis
no specified maximum for the number of recordsin a collection, but the implementation
can assume that the largest collections will have at most a few hundred records. A
"reference card" record is to have text data fields for the author, title, journal, keyword,
and abstract; it is also to have integer fields for issue number, year, first page, and last
page. The text data fields should each hold 250 characters.

The "RefCard" program is to:

« alow auser to create acollection of "reference card" records.

« saveacollection to adisk file and then reload a collection in subsequent runs of the
program.

e et the user add arecord to a collection, view an existing record, change afield in
an existing record, or remove arecord from the collection.

e let the user search for the first record with a particular word (name) in the "author",
"title", "keyword", or "abstract" field; after displaying the first matched record the
program is to allow searches for subsequent matching records. In addition to

RefCards example 727

searches on specified individual fields, the search system should also allow for a
search for aword in any of these fields.

« let the user display the contents of the "title", "keyword", "author", or "abstract"
fieldsfrom all cardsin the collection.

The program should be interactive, prompting the user for a command and for other
data as needed. The command entry system should allow the user to view the range of
commands appropriate in a given context.

22.1.1 Design
Preliminary design: Objects and their classes:

So, where do you start?

You start by saying "What objects are present in the running program?"

Some objects are obvious. The program will have "RefCard" objects. These will
own text strings (character arrays) in which data like author names, keywords, title and
so forth are stored. They will also probably own some integer data like "year of
publication". What do they do? They display their data, they can store their data to
disk files, they can read data from disk files. They've got to get filled with data
somehow; so it would seem reasonable if a "RefCard" could interact with a user
allowing data to be entered or changed.

The program is to work with at most a few hundred of these "RefCard" objects.
They aren't that large (a little less than 1300 bytes), and since there will be only a few
hundred at most, it is reasonable to keep them all in memory while the program is
running (more than 750 records fit into a megabyte and that isn't much for most current
PCs). Keeping al records in memory will make searches much faster. So, there will
have to be something that holds the collection in memory. There is no "unique search
key" that could be used for something like a binary tree. Instead we will need
something like a"list" or "dynamic array". A dynamic array seems more appropriate.
Removal operations are going to be rare; lists are better than dynamic arrays only in
cases where removals are frequent. The dynamic array can be an instance of an "off the
shelf" classfrom aclasslibrary.

Although a dynamic array can be used to hold the actual collection, there had better
be something a little more elaborate. We need operations that involve the collection as
awhole — like the searches (as well as operations like saving the collection to a disk
file). The search system needs information like the string that is sought, and the current
position in the collection if we are doing operations like "find" and "find again". We
will also need some idea like "current position" if we are to handle requests like "show
card ...", and "remove card ...". A "CardCollection" object could own the actual
dynamic array with the cards and, in addition, other information like search string,
position, and name of thefile. A Car dCol | ecti on object could organize searches and

RefCard objects

A list or dynamic
array

CardCollection object

728

A World of Interacting Objects

Userlnteraction
object

main()?

Classes and objects

similar operations like viewing a particular field from al records. What exactly does a
Car dCol | ecti on own and do? Don't know. Itsrole will become clearer aswe iterate
through the design process.

Although the Car dCol | ect i on object could handle some of the interactions with the
user (like getting information needed for a search), it will be useful to have more
general interactions handled by a "Userlnteraction” object. Actually, thisis probably
not strictly necessary for this program. However, as we move to more elaborate
programs (particularly those built on top of framework class libraries as discussed in
Part V) we will see "standard" arrangements of classes. It will be "standard" to have
some "Userlnteraction” object that controls the overall program flow. This User -
I nteraction object will create the CardCol | ecti on object, get the top level
commands from the user ("add a card”, "show a card", "change a card", "do a search",
...), sort out files and do similar tasks. In this program, the User I nt er act i on object
will only have one Car dCol | ect i on; but if aUser | nt er act i on object could use more
than one window for input and output it could have a separate Car dCol | ecti on
associated with each separate window (that is how word processors and other programs
typically work).

If the CardCol | ecti on object is organizing everything, what is there left for the
"main program"? Not much. A main program for one of these object based systemsis
usually simple: create the principal object, do any other initializations, tell principal
object to "run", when "run" finishes do any tidying up that may be needed. In fact, we
can write the main program already:

int main()
User | nteraction u;
U.lnitialize();
U.Run();
U . Ternminate();
return O;

}

We aren't yet into "class hierarchies" (see next chapter). When we get class
hierarchies we will have to do a bit more work characterizing classes and finding
relationships between classes. For now, things are ssmple. The various types of object
identified so far correspond directly to the classes that we will need. They are
summarized in Figure 22.1. Most are shown as "fuzzy blobs'. The fuzzy blobs
represent "analysis' level classes. We have arough idea as to what they own and what
they do, but we can't yet define any hard boundaries.

RefCards example: Design 729

PR owns:
- "N, a CardCol | ection
User | nteraction Does:
-~ Run,
gl -;' Get Command
?
i
l‘ﬂ-l"> <‘“ .Iv- ,’—“i’“
Ref Card CardCol | ection
- -
“:»,‘ -4 -d_‘\-LF -.
Owns:. f Oowns:
strings tor details of file
in?:ng,rstlf:)re, ete nunber of cards
g a dynam c array
year etc. data for search request
Does: D .
File read, wite oes:
! Add a card,

Show cont ent
Change cont ent
Check fields

Find a card,

organi ze transfer
of all cards to
file,

(" Dynami c) ?

Array

num t ens,
pointer to
array,

Lengt h()
Append()
Renove()
Nt h()

Figure 22.1 First idea for classes for RefCards example.

Class Dynani cArray isan exception. It isshown as adesign level class diagram
with a firm boundary, exact specification of itsinterface and private data. After all, its
from aclasslibrary and has aready been designed and implemented. Our next task will
be to firm up those fuzzy blobs so that they too can be defined with firm boundaries.

Design 2: Characterize interactions among objects

The next stage of the design process is typically iterative. Our aim in this stage is to
clarify what instances of these classes own and exactly what they do. We aren't yet

730

A World of Interacting Objects

Scenarios

interested in exactly how they do their tasks, just trying to identify how the overall work
of the program gets split up into tasks that each different object must perform.

The best approach to assigning responsibilitiesisto try out "scenarios' that illustrate
how some of the program's mgjor tasks can be accomplished. A simple scenario for this
program would be "the things that happen when its time to terminate”; it will be simple
because the only important thing that will happen is that the Car dCol | ect i on must
save all the cards back to a disk file. A more complex scenario would be "the things
that happen when we search for cards with the word 'Stroustrup' in their ‘author’ fields".
This scenario would be more complex because it probably involves more types of
object and more elaborate processing tasks.

While working through these scenarios you guess. Y ou guess things like "object-1
will ask object -2 to perform task A". Then, you examine the implications. If object-2
is to perform task A then it had better own (or at least have access to) all the data
needed to carry out thistask. If this scenario has object-2 owning some data, then those
data had better not appear as belonging to a different object in some other scenario. If
object-2 doesn't own the data but has "access to them", then you had better sort out how
object-2 got that access. Presumably some other object gave object-2 a pointer to the
data, but which other object and when? You guess again noting down an extra
responsibility for another object (and, hence, afunction for its class).

Naturally, some of your guesses are wrong. You run through a few scenarios.
Discover that in different scenarios you've allocated ownership of some specific data to
different objects. You have to decide which class of object really should own the data
and go back and change the scenario that isincorrect.

Of course, thisis still a fairly simple program so the scenario analysis and other
mechanisms for "fleshing out" the roles of the classes will be completed rather easily.

Example scenario: initialization

Assumptions: 1) the main program has already created a User | nt er act i on object, 2)
the constructor for the User | nt er act i on object created a Car dCol | ect i on object, 3)
thisCar dCol | ect i on object is"empty", it will have adynamic array with some default
number of dots, and it will have initialized things like its count of cards to zero.

Initialization task: get the user to enter afilename, if the file exists read data on existing
cards, otherwise create an empty file where anew collection of cards can be saved.

Possible interactions:

1. Userlnteraction object getsuser to enter afilename. It could open thefile, but
handling the file might be better left to the Car dCol | ect i on object. So...

2. Userlnteraction object asksCar dCol | ect i on object to open thefile, passing the
name of the file as an argument in the request.

RefCards example: Design 731

3. TheCardCol | ecti on object should first try to find an existing file (an "open”
operation with "no-create” specified).

If this works then existing data should be |oaded (see next step).
If that operation failed, the Car dCol | ect i on object should try to create anew file.

If it can open anew file, the Car dCol | ect i on object should report success (it
should also make certain that all its datafields are initialized properly, though
possibly this should already have been donein its constructor).

4. If theCardCol | ecti on object was ableto open an oldfile, it hasto load the
existing cards into memory.

It is going to have to have aloop in which it creates Ref Car d objects, gets them
filled with data from the file, and then adds them to its Dynani cAr r ay (lets call that
f Store).

It will be easiest if the first dataitem in the file is an integer specifying how many
cardsthereare. The Car dCol | ect i on object can read thisinteger into its card
count (f NunCar ds) and then have aloop like the following:

for(int i =1; i<= fNunCards; i++) {
Ref Card *r= new Ref Card;
r -> ReadFron(input file);
f Store. Append(r);
}

The Car dCol | ect i on object doesn't know what dataisin aRef Car d so it can't read
thedata. A Ref Car d does know what datait wants. So, as shown, the
Car dCol | ect i on object asks each newly created Ref Car d to read itself.

When this process finishes, we will have a set of Ref Car ds that have each been
created in the heap. Their addresseswill be held inthe Dynami cArray f St or e.
Becauseit ownsf St or e, the Car dCol | ect i on object can get at the individual
Ref Car ds whenever it needs them.

There should be some checks for successful filetransfers. If everything ran OK,
then the Load function should return a success indicator to the Open function which
can the report successto the User | nt er act i on object.

5. TheUserInteracti on object should check the success/failure indicator returned
by the Car dCol | ect i on object; if the file couldn't be opened the
User | nt er act i on object should either terminate the program or loop to alow the
user to guess another file name.

732

A World of Interacting Objects

Diagramming the
object interactions of
ascenario

Meanings of symbols
in diagram

6. Finally, theUser | nt er acti on object should tell the Car dCol | ect i on object to
print a status report so that the user knows how many cards are in the collection.

It isusually helpful to represent such interactions through a diagram, like that shown
in Figure 22.2. The diagram shows things that happen at different times; the time
increases as you go down the diagram. The entries shown across the diagram illustrate
what different objects are doing.

Userlnteraction Car dCol | ection Dynami cArray
obj ect obj ect obj ect
1
| Qoen(fil enane)py, Ref Car d
obj ect s!
Load()

+

Constructor. H
R

ReadFr om()

Append(..) .

success/
4 failure reply

Report St atus()

Figure 22.2 Object interactions when loading from file (activities resulting from
execution of UserlInteraction::Initialize() for an Ul object).

Back in Chapter 15 where design techniques for top down functional decomposition
were reviewed, diagrams were rated as less useful than text descriptions and pseudo
code. It was suggested that diagrams like those charting possible function calls weren't
that informative. These class interaction diagrams do provide a much clearer indication
of the dynamics of a program. They can capture what is going on in each significant
subtask that must be performed.

A diagram like that shown in 22.2 doesn't try to represent everything; for example,
there is nothing about the file not opening and having to be created. The focusis on the
more important interactions between objects. The classes of the objects involved are
indicated by the class labels across the top. Single vertical lines show where an object
isin existence. The UserInteraction (Ul), CardCol | ecti on, and Dynami cArr ay
object all exist before the start of the diagrammed scenario and continue to exist after its

RefCards example: Design 733

finish. The Ref Car d objects only get created part way through the scenario, so their
vertical lines start half way down.

The outline rectangles indicate where an object is active, i.e. executing a function or
its own function has invoked a global function or action by some other object. In the
example, al activity is part of UserInteraction::Initialize() (thelongrectangle
for the User | nt er act i on object). Arrows indicate function calls (and sometimes are
used to provide information on results returned). The line with the '+' tag indicates a
place where a new object is to be created.

Thus, the diagram shows the process of acall fromthe I nitialize() functionof a
Ul object to the Open() function of aCar dCol | ect i on object. This Qpen() function
calls Load() (executed by the same Car dCol | ecti on object). Function
CardCol | ection:: Load() hasaloop. Inthisloop, aRef Car d object gets created (the
'+' ling), then gets asked to execute its ReadFr on() function. Thenthe Dynani cArr ay
object gets asked to do an Append() operation.

Results:
The process of analysing and diagramming this scenario has added new functions to the

responsibilities proposed for class Car dCol | ecti on. It isgoing to have to have
functions like:

int CardCol | ection: : Qpen(char*) open file wth given nane

void CardCol | ection:: Load() create RefCards, get
themfilled in with data
fromfile

void CardCol | ection:: Report Status() state what was read

The Car dCol | ect i on object should probably be responsible for recording the name of
its file (this name will be needed in some of the output shown to the user, like that from
Report Status()). It had also better have an f st r eam data member so that it can
actually keep hold of the file from the time its told to Open() till the timeitstold to
C ose() andsavethedata. So, we have also got a couple of extra data members:

CardCol | ection {
public:

private:
int f NunCar ds;
char *f Fi | eNane;
fstream fFR le;
DynanmicArray fStore;

b

Equivalence between
diagram and earlier
text description

New responsibilities
identified from
scenario

734 A World of Interacting Objects

Exampl e scenario: termination

Assumptions. The Car dCol | ect i on object has an open f st r eamto which it can write
its cards.

Termination: The termination stage of the program requires that all Ref Car ds get saved
to file and then they should probably be deleted (not absolutely necessary here as the
program is about to finish, but it would matter if the program was supposed to alow the
user to continue by opening another card collection).

Possible Interactions:

Interactionson Figure 22.3 diagrams an idea as to the interactions. The User I nt er act i on object will
termination 5q the Car dCol | ect i on objectto O ose(). TheCardCol | ect i on object would start
by calling its own Save() function. Thiswould start by setting the file so that any
existing data gets overwritten, then it would write out the number of cards, after this
there would be aloop in which each Ref Car d object in the Dynani cAr r ay getstold to

saveitsown data. The code would be something like:

fFile. seekp(0);

fFile << fNunCards << endl;

for(int i=1;, i <= fNunCards; i++) {
Ref Card *r = (RefCard*) fStore. Nt h(i);
r->WiteTo(fFile);
}

Once the cards had been saved, the file should be closed and then there could be a

second loop in which they get removed from the Dynani cAr r ay and are then deleted.
Thiswould bedoneintheCar dCol | ecti on: : ose() function:

fFile. close();

for(int i =fNunCards; i > 0; i--) {
Ref Card *r = (RefCard*) fStore. Renove(i);
delete r;
}

When the function Car dCol | ecti on: : Cl ose() was completed, control would
return to User | nt eracti on: : Ter mi nat e() . There would then be an opportunity to
delete the Car dCol | ect i on object.

Results:;

New responsibilities This analysis identifies just one extra function. Class Car dCol | ect i on will haveto
identified gefine asave() routine; like Load() thiswill be a private member function.

RefCards example: Design 735

User I nteraction Car dCol | ecti on Dynami cArray R(.Ef Car(il
obj ect obj ect obj ect obj ect s!
|
d ose() ’
Save()
Nt h() > [
loop in
Save() WiteTo()
A P
\ Renove() '
loop in
Cl ose()
del ete
T del ete
Figure 22.3 Object interactions resulting from UserInteraction::Terminate().

Example: Interaction between the User and the Userlnteraction object

The code for handling interactions between the human user and the Ul object will itself
be smple. This code will form the body of the function User | nt er acti on: : Run().
Basically, all we need is aloop that gets a command from the user (a single letter will
do), the command will (usually) be easy to convert into a request that the
Car dCol | ect i on perform some action like showing an existing card, or adding a new
card.

A user command like "add a card" can be passed directly to the Car dCol | ect i on
object. A command like "change contents of a card" or "delete a card" will require
additional input to identify the card. (Cards may as well be identified by their sequence
number in the collection; these sequence numbers can appear in listing so that the user
knows which card iswhich.) We will need afew simple auxiliary routines to get extra
input data.

User I nteraction:: Run() will be something along the following lines:

void Wserlnteraction:: Run()
{
int done = O;
cout << "Enter commands,
for(; !done;) {

? for help" << endl;

Simple command
loop

736

A World of Interacting Objects

Auxiliary private
member functions

New responsibilities
identified

char command = Get Command();
swi t ch(command) {

case 'q done = 1; break;
case '? Hel p(); break;
case 'a' f Col | ection->AddCard(); break;
case 'c' DoChange(); break;
case 'd' DoDel ete(); break;
case 'Vv' : f Col | ecti on->DoVi ew(); break;
defaul t :
cout << "Command " << command <<
" not recogni zed" << endl;
}
}
}

It implies the existence of alargish number of very simple auxiliary routines. These
will al become additional private member functions of class User I nt eracti on. A
function like Get Command() will just read a character, convert it to lower case, and
return it.

Functions like DoChange() andDoDlel et e() both need the user to input a card
number. Obviously the number entered has to be validated; it will have to be in the
range 1 to n where n is the number of cards owned by the collection. (Note, the
User I nt eract i on object hasto be able to ask the Car dCol | ect i on object how many
cardsit has.) Since this number input routine is needed by several routines, it might as
well become another private member function. Once these "DoX ()" functions have got
any necessary additional input, they will call matching functions of the
Car dCol | ect i on object.

Elaboration of these simple member functions can be handled by using much the
same sort of top down functional decomposition techniques as presented in Part I11.
Here the "top" is asingle (moderately complex) member function of a specific class.

Results:;

Class Car dCol | ect i on must report the number of cardsit has, so we need:

int CardColl ection:: NunCards()

as an extra public member function. Class Car dCol | ect i on will also need AddCar d(),
DoVi ew(), ShowCar d(i nt cardnun) and similar functions. Some additional scenarios
will be needed to clarify the prototypes (argument lists) for these functions.

A largish number of simple private member functions have been identified for class
User I nt eracti on. Weare going to need:

char User I nteraction: : Get Command() ; get character

RefCards example: Design 737

i nt User I nteraction::Pi ckACard(); get valid card nunber
voi d UserInteraction:: Hel p(); list valid commands
voi d User | nteraction: : DoDel ete(); organi ze del ete

voi d User | nt eracti on: : DoChange() ; organi ze change

voi d User | nteracti on: : DoShow() ; organi ze show

Example scenario: add a card

Adding a card: The collection will have to create a new Ref Car d, get the Ref Car d to
interact with the user to obtain the information that it needs for its data members, and
then it will have to add the card to the dynamic array. An interaction diagram is shown
in Figure 22.4.

User I nteraction CardCol | ection Dynami cArray Ref_Card
obj ect obj ect obj ect obj ect
AddCar d() - +
construct or
Get Dat a() >
Append() >
T T I

Figure 22.4 Obiject interactions resulting from a User's "add card" command.

Most of the work can be left to the newly created Ref Car d object. This can prompt
the user to enter data for each of the data members (title, authors, year of publication
etc.).

Results:
Need functions:
voi d CardCol | ecti on: : AddCard();

and

voi d Ref Card: : Get Dat a() ;

738

A World of Interacting Objects

Exampl e scenario: getting a card shown or changing an existing card

These two operations are going to involve very similar interactions among the
participating objects. The patternisillustrated in Figure 22.5.

The User I nt er act i on object will execute aroutine (Pi ckACar d()) that promptsthe
user for the card number. This will involve an interaction with the Car dCol | ecti on
object to make sure that the number entered isin range.

If a valid card number is entered, the User | nt er acti on object will ask the
Car dCol | ect i on object to ChangeCard() or ShowCard() .

User | nteraction Car dCol | ecti on Dynami cArray Ref_Card
obj ect obj ect obj ect obj ect
NumCar ds(),
Pi ckACar d()

ChangeCar d(..)
or ’ Nt h()
ShowCar d(..) ——>

Show() -

or
Change()

l |

Figure 22.5 Object interactions resulting from a User's "show card" or "change
card" commands.

The Car dCol | ecti on object will use the Nt h() member function of its
Dynani cArray to get a pointer to the chosen Ref Card. The "show" or "change"
command will then be forwarded to the Ref Car d object. A Ref Car d will handle "show"
by displaying the contents of all data members. A "change" command will involve
prompting the user to identify the data member to be changed (single character input),
display of current contents of that data member, and acceptance of new input value.

Example scenario: deleting a card

Theinteractions for a delete command are summarized in Figure 22.6

RefCards example: Design 739

User I nteraction CardCol | ection Dynami cArray Ref.Card
obj ect obj ect obj ect obj ect
NunCar ds ()
Pi ckACar d()

Del et eCard(..)

Renove() '

del ete

i I
Figure 22.6 Object interactions resulting from a User's "delete card" command.

Example scenario: viewing afield from every card

View: The user is prompted to identify which field is to be viewed (choice restricted to
‘author’, 'title', 'keywords, or ‘abstract’). The contents of the chosen field should then be
displayed (along with a card identifier number) for each card in the collection.

Possible Interactions:

Figure 22.7 diagrams an idea as to the interactions. The User | nt er act i on object can
simply pass a"view" request to the Car dCol | ect i on object.
The Car dCol | ect i on object will first have to get the user to identify thefield that is
to be displayed. Thiswill involve the use of another auxiliary private member function,
Get Fi el d(). This function will prompt the user to chose among the allowed fields
(again, a single letter code should suffice for input). The function should return an
integer identifier.
These "field identifiers" are shared with the Ref Car d objects. It would probably be
best if they were defined in the RefCard.h header file.
After the code to get afield identifier, the DoVi ew() function will need aloop in Loop processing each
which it accesses each Ref Car d from its collection and tells it to print the contents of c@din thecollection
the chosen field. The code will be along the following lines:

for(int i =1; i <= fNunCards; i++) {
cout << i << "\t";
RefCard *r = (RefCard*) fStore.Nh(i);
r->PrintField(field);
cout << endl;

}

740

A World of Interacting Objects

Simple form of
search

User I nteraction Car dCol | ecti on Dynani cArray R?f Car(?
obj ect obj ect obj ect obj ect s!
|
DoVi e
Get Fi el d()
Nt h() .
loop in
DoVi ew()
PrintField() >
T

Figure 22.7 Object interactions resulting from a User's "view" command.
Results from scenario:

New functions: CardCol | ecti on: : DoVi ew(), CardCol | ection:: GetFi el d(),and
Ref Card:: PrintFiel d().

Example: Searching for cards with a given word

The actua interactions among objects when doing a simple search would be somewhat
similar to those shown for "view".

Once again, the Car dCol | ect i on object would need to get the user to identify the
field (data member) of interest; though there is a change here in that system is supposed
to alow a search on "any" of the four fieldsin addition to searches on individual fields.
(Probably, function Get Fi el d() should be extended so that it has a parameter that
indicates whether "any" is an acceptable input. This parameter would be "false" if
Get Fi el d() were being called to find a field for "view" but "true" in the case of a
search.)

After identifying the field of interest, the Car dCol | ect i on object would have to get
the user to enter the string (the name or word that is to be found in the search). It could
then have aloop asking each Ref Car d in turn to "check afield" (rather than print afield
asin"view").

RefCards example: Design 741

Coding the search for aword in a character array like atitleis not a problem. There
isafunctionin the string library that does exactly this (functionstrstr()).

The main problem is that a simple search would list al the cards that matched. The
specification required something like the "Find..." and "Find Again..." commands that
you get with most word processors.

We will have to have two functions:

Car dCol | ecti on: : DoFi nd()
Car dCol | ecti on: : DoFi ndAgai n()

The DoFi nd() function will do the more elaborate work. It will prompt the user to
identify the field and the string, and organize a search for the first card that matches. It
will have to arrange for the Car dCol | ect i on object to store state information defining
the field, string, and position in the collection where the first matching card was found.

The DoFi ndAgai n() function should check that there is a search in progress (string
defined, position reached last time set etc). If that is OK, it should have a loop that
works through successive cards until another match is reached. It should then update
the state data so that another later call will continue the search.

Thisimplies that we need some additional data membersin class Car dCol | ect i on:

char *fFi ndString;
int f Fi ndPos;
int f Sear chFi el d;

These are going to have to be set appropriately in the constructor.

Finalising the design

The design process using scenarios (and supplementary top-down functional
decomposition when you get a complex member function) have to continue until you
fully can characterize your classes. Y ou need to get to the point where you can write
down a complete class declaration and provide short (one sentence) descriptions of each
of the member functions.

For this example, we eventually get to the following:

class RefCard {

public:
Ref Card();

voi d ReadFr on(f strean& s);
voi d WiteTo(fstrean& s) const;

Communi cation wth user

Checking afield for a
string

More complex search
required by
specification

DoFind()

DoFindAgain()

Class RefCard
declaration

742 A World of Interacting Objects

*/

voi d Show() const;
voi d GetData();
voi d Change() ;

i nt CheckFi el d(int fieldnum char *content);
voi d PrintField(int fieldnum;
private:

char f Aut hor s[KNAVEFI ELDSI ZF] ;
char fTitl e[KNAMEFI ELDS| ZE] ;
char f Jour nal [KNAMEFI ELDS| ZE] ;
char f Keywor ds[kNAMEFI ELDSI ZE] ;
char f Abst r act [KNAMEFI ELDS| ZE] ;
short fFirstPage;

short fLast Page;

short flssue;

short f Year;

b

Asrequired by the specification, the character arrays used to store titles are fixed sized.

Class RefCard, Constructor
function Initialize all character arraysto blank string, all integers to zero.
specifications

ReadFrom, WriteTo
Read data from (write data to) atext file.

Show
Print identifying field labels and contents of all data members.

GetData
Prompt user and then read values for each data member in turn.

Change

Get user to identify data member to be changed (enter aletter),
output details of current contents of that data member, read replacement
data.

CheckField

Integer argument identifies data member to be checked, string
argument is content to be searched for using strstr () function from
string library.

PrintField
Integer argument identifies data member that isto be output.

RefCards example: Design 743

class CardCol | ection {
public:

Cf\rdOoI lection();

f*Attachi ng to file

i/nt pen(const char fil enane[]);
vi)i d d ose();

{:I}ii n conmands

int NurrCar ds() const;

voi d Report Status() const;

void AddCard();

voi d Del et eCard(int cardnum;

voi d ShowCar d(i nt cardnum const;
voi d ChangeCard(int cardnum;

voi d DoFi nd() ;

voi d DoFi ndAgai n() ;

void DoVi ew() ;

privat e:
int GetFi el d(int anyal |l owed);
voi d Load() ;
voi d Save();

int f NunCar ds;
char *f Fi | eNane;
fstream fFile;
Dynam cArray fStore;
char *fFindString;
int f Fi ndPos;

int f Sear chFi el d;

Constructor

Initialize datafields, f NunCar ds iszero, f Fi ndSt ri ng is NULL €tc.

Open
Either open existing fileand call Load(), or create anew file. If
can't do either report error.

Close
Call save() to get cardsto file, then clean up deleting cards.

NumCards
Report number of cards in current collection.

ReportStatus
Print out name of file, and details of number of cards.

Class CardCollection
declaration

Class CardCollection
function
specifications

744 A World of Interacting Objects

AddCard
Create acard, get it to obtain its data from the user, add to
collection, update count of cards owned..

DeleteCard
Remove identified card from collection then delete it, update count
of cards owned.

ShowCard
Get pointer to chosen card from dynamic array, tell card to show
itself.

ChangeCard
Get pointer to chosen card from dynamic array, tell card to interact
with user to get changes.

DoFind

Use Get Fiel d() (specifying any as OK) to alow user to pick
field, then prompt for string, then loop through cards asking them to
check the specified field-string combination. Stop as soon as get a match,
asking the card to show itself and recording, in state data, the point where
match was found. If no matches, warn user and discard the search
information

DoFindAgain

Check that thereisasearch in progress. If not, warn user. If there
isasearch, continue from current point in collection checking cards until
either find a match or there are no more cards.

GetField
Use simple "menu” selection system to let user pick afield.

Load
Read number of cardsin file, then loop creating cards, letting them
read their data from file, and adding them to collection.

Save
Write number of cardsto file, then let each card write itself to file.

Class Userlnteraction class Wserlnteraction {
declaration public:
User | nteraction();

RefCards example: Design 745

void Initialize();
voi d Run();
voi d Termnate();

privat e:

Aswell as devel oping the class declarations and function summaries, you might want to

char Get Command() ;
int Pi ckACard();
voi d Hel p();

voi d DoDel ete() ;
voi d DoChange() ;
void DoShow() ;

CardCol | ection *fCol | ection;

Constructor
Create a Car dCol | ect i on object

Initiaize
Ask the user to enter afilename, tell the Car dCol | ect i on object
to try to open that file.

Run
L oop getting and processing user commands until a"quit"
command is entered.

Terminate
Tell the Car dCol | ect i on object to close up, then get rid of it.

GetCommand
Get single character command from user.

PickACard

Prompt user for a card number, make certain that it isin range (ask

Car dCol | ect i on object how many cards there are to chose from).

Help
Print explanation of available commands.

DoDelete, DoShow, DoChange
UsePi ckACar d() to get the card number then call the
corresponding member function of the Car dCol | ect i on object.

produce "design diagrams" for the classes like that shown in Figure 19.1.

Class Userl nteraction
function
specifications

746 A World of Interacting Objects

File (module) structure of program

Another design choice you now have to make is how these components will be
organized in files. Hereit would be appropriate to have thefiles:

CC.h,CC.cp CardCaollection class
D.h,D.cp the dynamic array

main.cp the little main() driver routine
RefCard.h, RefCard.cp RefCard class

Ul.h, Ul.cp

Userlnteraction class

" Header Because the objects of these classes interact so much, there are lots of inter-
dependencies’ genendenciesin the code. For example, when compiling the code in Userlnteraction.cp,
the compiler has to be able to check that all those requests to the Car dCol | ecti on
object are valid. This means that it will have to have read the CardCollection.h file
before it compiles Userlnteraction.cp.

Direct (uses)

_ It is often useful to draw up a diagram showing the interrelationships between files
dependencies g that you remember to #include the necessary headers. Figure 22.8 illustrates some of
the relations for this program.

U.h CC. h D. h Ref Card. cp

\

mai n. cp U.cp CC.cp D.

. . Cp Ref Card. cp
011\ o444 44 o444 o444
100 100 100 100 100
0410 0410 040 0410 0410
mai n. o U.o CC.o D. o Ref Card. o
Figure 22.8

lllustration of direct file dependencies in the RefCard program.

RefCards example: Design 747

The code in CardCollection.cp uses Ref Car d functions and Dynami cAr r ay functions
so it must #include both these header files. Class User | nt eracti on needs the
declaration of class Car dCol | ecti on so it must include CC.h; similarly main needs
#include Ul.h.

There are further dependencies. Although User | nt er act i on doesn't make any
direct use of aDynami cArr ay it does heed to know about this class. Similarly, the main
program needs to know about the existence of class CardCol | ecti on. These
dependencies result from the presence of data membersin classes.

ClassCar dCol | ecti on hasaDynani cArr ay asadatamember. When the compiler
is trying to process the code in Ul.cp it will need to work out the size of a
CardCaollection object and so will need to have already read the file D.h.

When processing main.cp, the compiler would need to be reassured that the
Car dCol | ecti on* pointer data member in class User | nt er act i on was referring to a
defined type of structure. It wouldn't need to read the complete declaration of class but
would need to have the class declared (i.e. the Ul.h file would need to include a
declaration like"cl ass CardCol | ecti on; " as well as the full declaration of class
User I nt er acti on).

Y ou haveto sort out all the additional indirect dependencies so that you can #include
all required files. If you forget some, you will get numerous compiler error messages.
The actual messages may be obscure — complaints like "Illegal cast from int to void*",
or "Undefined function” for a function that you know is defined. Compilers can get
quite confused when they encounter references to classes that they haven't seen
declared. If you get such odd compiler errors, start by checking that you included the
right header files and in the correct order (as Car dCol | ect i on usesDynami cAr r ay, the
#include "D.h" should come before the #include "CC.h" to make certain that class
Dynami cArr ay has been declared before an instance of the class gets used).

22.1.2 Implementation

As aways, if the design is complete then the implementation is trivial.. The main
program has already been given.

The header file Ul.h would contain the class User | nt er act i on declaration shown
earlier. The presence of the Car dCol | ect i on* data member meansthat the header file
would have to contain a declaration the existence of class Car dCol | ecti on. The
implementation file, Ul.cp, would need to #include stdlib, ctype, Ul, and CC.

The constructor simply creates the Car dCol | ection. Thelnitialize() member
function will get afilename from the user and ask the Car dCol | ect i on to open thefile;
if this fails the program terminates (this call to exi t () lead to the need to #include
stdlib.h). Function Ter mi nat e() gets the Car dCol | ecti on to close up beforeit is
deleted.

Wserlnteraction:: Userlnteraction()

Additional (indirect)
dependencies

Compiler error
messages relating to
missing headersare
often obscure

User|nteraction

constructor

748 A World of Interacting Objects

fColl ection = new CardCol | ecti on;

}
Initialization, getting void Wserlnteraction::Initialize()
filename {
char buf f [100] ;
cout << "Enter nane of file with cards : ";
cin >> buff;
int status = fColl ection->Cpen(buff);
if(status < 0) {
cout << "Sorry, can't open (or create) file."
"dving up" << endl;
exit(1);
}
f Col | ecti on->Report Status();
}

void Userlnteraction:: Terninate()

fCol | ecti on->0 ose();
delete fCol | ection;

}

The highlighted statements are typical of the "hey object, do action" calls that pervade
the code.
The complete version of the Run() member functionis:

I nteraction loop for voi d UserlInteraction::Run()
user commands {
i nt done = 0;
cout << "Enter commands, ? for hel p" << endl;
for(; !'done;) {
char command = Get Command();
swi t ch(command) {

case '(' done = 1; break;

case ' ?' Hel p(); break;

case 'a' f Col | ecti on->AddCard(); break;
case 'c' DoChange(); break;

case 'd' DoDel ete(); break;

case 's' DoShow(); break;

case 'f' f Col | ecti on->DoFi nd(); break;

case '@’ f Col | ect i on- >DoFi ndAgai n(); break;
case 'V' fCol | ecti on->DoVi ew(); break;
defaul t :

cout << "Command " << command <<
" not recogni zed" << endl;
}

RefCards example: Implementation 749

Menu based programs like this should try to include a help function that explains
their options:

void Wserlnteraction::Hel p() Builtin help
{

cout << "Commands are : << endl;
cout << "\ta Add a new card." << endl;

cout << "\tv Viewone field fromall cards" << endl;
cout << "\tg Qit" << endl;
}

Functions DoDel et e() , DoChange() , and DoShow() are very similar; DoDel et e()
can represent them all:

voi d Userlnteraction:: DoDel ete() DoDelete() and
similar functions
int which = Pi ckACard();
i f(which < 1)
return;
f Col | ecti on->Del et eCar d(whi ch);

}
They all use the auxiliary function Pi ckACard() t ogetavalid card number:

int Wserlnteraction::Pi ckACard() Auxiliary input
functions
if(fCollection->NunCards() < 1) {
cout << "There aren't any cards so you can't do"
"that now " << endl;
return O;

cout << "Wich card? (Enter nunber in range 1 to " <<
fCollection->NunCards() << ") : " << endl;
int aNum
cin >> aNum
if(lcin.good()) {
cout << "??";
cin.clear();
cin.ignore(100, '\n");
return O;
}
if((aNum< 1) || (aNum> fCollection->NunCards())) {
cout << "lInvalid input, ignored." << endl;
return O;

return aNum

750 A World of Interacting Objects

The other auxiliary input function, Get Cormand() , isused by Run() togetasingle
input character. The call to i gnore() removes ("flushes") any other input remaining
in the stream (this avoids problems when a user does something like type a command
name, e.g. 'view,' instead of just a command letter 'v').

char Wserlnteraction:: Get Conmand()

{
char ch;
cin >> ch;
ch = tol ower(ch);
cin.ignore(100, '\n");
return ch;

}

class CardCollection As usual, constructor for class Car dCol | ect i on should initialize its data members.
It is not absolutely necessary to initialize all members. For example, we know that
there is no possibility that the f Fi | eName field would be used before being set, so it is
acceptable to leave this uninitialized. On the whole, you should be cautious and
initialize everything!

constructor Car dCol | ecti on: : CardCol | ection()
fFi ndString

fFi ndPos = -1;
fNunCards = O;

NULL;

}

Opening and closing Function Open() really consists of two parts. The first deals with the case of an
the associated file eyigting file; this uses the auxiliary Load() function to get the data. The second part
deals with the case where it is necessary to create anew file. Function Cl ose() needs
acall to Save(), the actual file closing action, and some tidying up operations. (The
tidying up isn't comprehensive; we don't get rid of the array of pointers owned by the
Dynami cArray. The next chapter covers "destructor” — specia automatically invoked
tidy up routines. Class Dynani cAr r ay really needs a"destructor” function to tidy away
its pointer array.)

The initialization step of class User | nteracti on also involves a call to a
CardCol | ection: : Report Status() function. This function is not shown. It would
simply print out the name of the file associated with the Car dCol | ect i on and the

number of cards that it contained.

int CardColl ection:: en(const char filename[])
{
/* Keep copy of file name */
fFi | eName = new char[strlen(fil enane)+1];
strcpy(fFileNane, filenane);

RefCards example: Implementation 751

fFile. open(fFileName, ios::in | io0s::out | io0sS::nocreate);
if(fFile. good()) {
Load();
return O;
}
fFile. open(fFileName, ios::in | ios::out);
if(!fFile.good())
return -1,
return O;
}
voi d CardCol | ection:: d ose()
{
Save();
fFile.close();
/1 Should get rid of data structures |ike the cards
for(int i =fNunCards; i >0; i--) {
RefCard *r = (Ref Card*) fStore. Rermove(i);
delete r;
}
if(fRndString !'= NULL) delete [] fFi ndString;
}

The Load() function reads the number of cards then loops creating cards and Reading the cards
getting them to read their data. Each card gets "appended” to the dynamic array. You
would need some error checking on input operations even if, as here, it is limited to
stopping the program if something seems to have gone wrong.
The Save() functionisnot shown. It just writes details of the size of the collection,
then gets each member card to write itself to the file.

void CardCol | ection:: Load()

fFile. seekg(0);
fFile >> f NunCards;
fFile.ignore(100,'\n");
for(int i=0; i < fNunCards; i++) {
Ref Card *r = new Ref Card;
r->ReadFron(fFile);
if(!fFile.good()) {
cout << "Sorry, file nmust be corrupt,
"giving up." << endl;
exit(1);

}
f Store. Append(r);
}

752 A World of Interacting Objects

AddCard() The function AddCar d() is a simple implementation of the ideas shown in the
interaction diagram shown in Figure 22.4:

void CardCol | ecti on: : AddCar d()

Ref Card *r = new Ref Card();
r->CGetData();

f Store. Append(r);

f NunCar ds++;

}

DeleteCard() The delete operation involves removing a chosen card from the Dynanmi cAr r ay
f St or e, deletion of the object, and updating of the member count. (Strictly, the
member count is redundant as we could always ask the Dynani cAr r ay for the number
of itemsthat it holds).

void CardCol | ecti on: : Del et eCard(i nt cardnum

Ref Card *r = (Ref Card*) f Store. Remove(cardnunj;
delete r;
f NunCar ds- - ;

}

ShowCard(), The ShowcCar d() and ChangeCar d() functionsaresimilar. A pointer to the chosen
ChangeCard() - carq is obtained from the Dynani cAr ray. Then the card is told to perform an action.
Function ShowCar d() illustrates both:

void CardCol | ecti on: : ShowCard(int cardnun) const

Ref Card *r = (Ref Card*) fStore. N h(cardnun);
r->Show() ;

I dentifying a field for Function Get Fi el d() has to prompt the user for an indication of the search field
search or display (taking into account whether "any" is an allowed response). It can return a -1 value for
an illegal input of a positive integer constant identifying a valid field. The constants

like kAUTHORFI ELD will have to be defined in RefCard.h.

int CardCollection:: GetField(int anyal | oned)
{
cout << "Wiich data field?" << endl;
cout << "a Authors, t Title, c Content (abstract),
"k Keywords" << endl;
i f (anyal | owed) cout << "x for any of these" << endl;
char ch;
int result =-1;
cin >> ch;
swi tch(ch) {

RefCards example: Implementation 753

case 'x': if(anyallowed) result = KANYFI ELD, break;
case 'a': result = kAUTHORFI ELD;, break;

case 't': result = kTI TLEFI ELD, break;

case 'c': result = kABSTRACTFI ELD, br eak;

case 'k': result = kKEYWIRDFI ELD;, break;

return result;

}

Function DoVi ew() had better check that there are some cards too view. If there Viewinga collection
are, it needsto use Get Fi el d() to let the user pick afield to be displayed ("any" is not
allowed here). If the user enters avalid field selection, then each card in the collection
getstold to print the contents of that field. (Loopslikethefor (;;) loop hererunfrom
1 to N because the Dynami cArr ay uses 1 for the first element, a departure from the
normal C convention of zero-based arrays).

voi d CardCol | ection: : DoVi ew()

{
if(fNunCards < 1) {
cout << "No cards to view" << endl;
return;
}
int field = GetField(0);
if(field <0) {
cout << "Invalid field choice, ignored." << endl;
return;
o b .
for(int i =1; i <= fNunCards; i++) {
cout << i << "\t";
RefCard *r = (RefCard*) fStore.Nth(i);
r->PrintField(field);
cout << endl;
}
}

Function DoFi nd() has some similaritiesto DoVi ew() . It starts by getting thefield Finding a particular
selection ("any" is alowed); then prompts for and reads the search string. It makes a card
copy of this string, the copy issaved inthe Car dCol | ecti on' s statedata. This makes
it possible to resume the search if requested.
Once al the search data are entered, the function loops getting and checking
successive cards from the collection. |f amatch isfound, the card is displayed, and the
function returns. The data member f Fi ndPos is used to control the loop and it retains
the position where amatch is found.
If there is no match in the entire collection, a warning is displayed and the search
data are tidied away.

voi d CardCol | ecti on: : DoFi nd()

754 A World of Interacting Objects
o { . .
I dentifying the search fSearchField = GetField(1);
field if(fSearchField < 0) {
cout << "Invalid field choice, ignored.” << endl;
return;
Getting the search char buf f[50];
string cin.ignore(100,'\n");
cout << "Enter search string : ";
cin.getline(buff,49, '"\n");
Saving a copy of the if(fRindString !'= NULL) delete [] fFRi ndString;
search string fFindString = new char[strlen(buff) + 1];
strcepy(fFindString, buff);
Search loop for(fFindPos = 1;fF ndPos<=f NunCards; fF ndPos++) {
Ref Card *r = (RefCard*) fStore. Nt h(fFi ndPos);
int match = r->CheckFi el d(f SearchField, fF ndString);
i f(match) {
Process a successful r->Show();
match return;
}
Report failure and cout << "No Matches" << endl;
tidy up delete [] fFindString;
fFi ndString = NULL;
f FindPos = -1;
}
Find again The function DoFi ndAgai n() must check that thereis asearch in progress and that

we haven't already reached the end of the collection. If further search is meaningful,
the function loops looking for the next matching card. Asin DoFi nd(), amatch results
in display of a card and return from the routine while failure to get a match resultsin a
warning.

The code should work even if the user does things like delete cards between
successive find again operations.

voi d CardCol | ecti on: : DoFi ndAgai n()

i f(fFindPos < 0) {
cout << "You've got to do a 'Find before "
""Find Again'" << endl;
return;

}
i f (fF ndPos >= f NunCards) {
cout << "No nore natches" << endl;
delete [] fFindString;
fFi ndString = NULL;
fFindPos = -1;
return;

RefCards example: Implementation 755

}

The constructor should initialize the strings to null and the numeric fields to zero:

}

f or (f Fi ndPos++; fFi ndPos<= fNunCards; fFi ndPos++) {
Ref Card *r = (Ref Card*) fStore. N h(fFi ndPos);
int match = r->CheckFi el d(fSearchField, fFi ndString);
i f(match) {
r->Show();
return;

}

cout << "No nore matches" << endl;
delete [] fFindString;

fFindString = NULL;

fFindPos = -1;

Ref Car d: : Ref Car d()

{

}

fAuthors[0] ="'\0';

fTitle[0] ="'\0";

fJournal [0] ="'\0';

f Keywor ds[O] "\O';

fAbstract[0] "\0';

fFirstPage = flLastPage = flssue = fYear = 0;

class RefCard

The functions for transfer to and from file are smple. Thefile used hereisatext file Filetransfer

rather than a binary file. 1t should be possible to read and edit such a file using a word
processor. (You may find that you have to use one of the utility programs on your
system to change the "file type" before you can edit these files. In some IDEs, datafiles

written by programs are created with non-standard types.)

Thefinal call toi gnore() inReadFr omisthere to consume the newline after the
last of the numbers. If you don't consume this newline, the next ReadFr on() operation
will fail as it will encounter the newline character when trying to read the "authors'

string and so get out of phase.

void RefCard: : WiteTo(fstrean& s) const

{

<< fAuthors << endl;

<< fTitle << endl;

<< fJournal << endl;

<< fKeywords << endl;

<< fAbstract << endl;

<< fFirstPage << " " << flastPage << endl;
<< flssue << " " << fYear << endl;

nuoununnonuon

756

A World of Interacting Objects

GetData()

Auxiliary, non-
member function
GetNumber

Output prompt and
read value

If bad input, clear
flag and buffer

voi d Ref Card: : ReadFr on(f strean& s)

{

}

1]

.getline(fAuthors, KNAMEFIELDSIZE-1,'\n");
.getline(fTitle, kKNAMEFIELDSI ZE-1,'\n");

(7]

>> f First Page >> flLastPage >> flssue >> f Year;
.ignore(100,'\n");

"n u:

Function Get Dat a() issimilar to ReadFron() except that it prompts for each data
item before reading:

void RefCard:: GetData()

{

}

cout << "Enter data for paper:" << endl;

cout << "Author(s) : ";
cin.getline(fAuthors, KNAMEFIELDSIZE-1, '\n');

cout << "Enter page range,\n";
fFirstPage = Get Nunmber ("\tfirst page: ");
fLast Page = Get Nunber ("\tl| ast page: ");
flssue = Get Nunber ("Issue # : ");

fYear = Get Nunber ("Year : ");

Numeric values are required for the page numbers, year etc. We need code that
prompts for a number, and then checks that it gets a (positive non zero) number. If the
user enters something that is not a number, we have to clear the error condition, remove
al characters from the input buffer and prompt again. Obviously, this code should be
as a subroutine, we don't want the code duplicated for each numeric field. Hence, we
have a Get Nunber () routine.

This could be made a member function of Ref Car d but it doesn't realy seem to
belong. Instead it can be afilescope function defined in the RefCard.cp file:

static int Get Nunber(char *pronpt)

int val = 0;
int ok =0;
whi | e(!ok) {
cout << pronpt;
cin >> val;
if(cin.good()) ok = 1,
el se {
cout << "??" << endl;
cin.clear();
cin.ignore(100,'\n");

RefCards example: Implementation

757

return val;

}

Function Show() just outputsfield labels and values:

voi d Ref Card:: Show() const

{

cout << "Author(s)\t:
cout << "Title\t\t:

cout << "Abstract\t:

}

' << fAuthors << endl;
'<< fTitle << endl;

' << fAbstract << endl;

Show()

Function Change() has to prompt for afield identifier, then it should display the Change()
contents of the field before reading a new value:

voi d Ref Card: : Change()

{

cout
cout
cout
cout
char

case 'a':

case 'Vv':

defaul t:

}

<<
<<
<<
<<

"Changing card:" << endl;

"Select a (Authors), t (Title), j
"\tk (Keywords), c (Content,
"\ty (Year), v (Volune),

comrand;

cin >> command;

command = t ol ower (command) ;
cin.ignore(100,'\n");

swi t ch(command) {

cout << "Authors currently " << fAuthors << endl;

cout << "Enter correction : ";

cin.getline(fAuthors,
br eak;

KNAVEFI ELDSI ZE- 1,

flssue = Get Nunber (" Vol une");

cout << "??" << endl;

}

(Journal)" << endl;
abstract)" << endl;
p (Page range)" << endl;

"\n');

FunctionPri nt Fi el d() simply outputs the contents of a chosen field:

void RefCard::PrintField(int fieldnum

switch(fiel dnum) {
case KAUTHCRFI ELD. cout << fAuthors; break;

case KTl TLEFI ELD. cout << fTitle;

br eak;

PrintField()

758

A World of Interacting Objects

CheckField()

case kKEYWORDFI ELD: cout << fKeywords; break;
case kABSTRACTFI ELD. cout << fAbstract; break;

}
}

While function CheckFi el d() usesstrstr() to check whether a given string is
contained in any of the string data fields:

int RefCard:: CheckField(int fieldnum char *content)

i f((fieldnum== kANYFIELD) || (fieldnum == KAUTHORFI ELD))
return (NULL !'= strstr(fAuthors, content));

i f((fieldnum== KANYFIELD) || (fieldnum == kTl TLEF ELD))
return (NULL !'= strstr(fTitle, content));

return O;

}

Function strstr(const char *s1, const char *s2) "looksfor asubstring within
astring” returning achar * pointer to the first place where substring s2 can befoundin
s1 (or NULL if it doesn't occur). If isone of the standard functions in the string library.
You can find more details using your IDE's help system (or the separate
"ThinkReference" program for the Symantec IDE).

22.2 INFOSTORE
Specification

The InfoStore program isto allow a user to maintain collections of news articles. These
articles are to be indexed according to the "concepts' that they contain. Each concept
can be represented by an arbitrary number of keywords. The vocabulary of concepts
and keywords is to be user definable; there can be a fixed maximum on the number of
concepts allowed (at least a few hundred). (The concept-keyword scheme is the same
as in the example in Section 18.3. For example you might have the concept "ape"
matched by any of a set of keywords that includes "ape", "apes', "chimps",
"chimpanzee", "bobo", "gorilla’,)
The"InfoStore" program isto allow a user to:

e create aninitia vocabulary of keywords and concepts;
e add keywords and concepts to an existing vocabulary;

e addthetext of news article to the system;

Information Store Example 759

» perform asearch for articles with search requirements specified by entry of
required and prohibited keywords.

22.2.1 |Initial design outline for InfoStore
Preliminaries

For a program like this, there are a few design decisions that come before the stage
where we start thinking about the objects that might be present.

We have to decide how to store the permanent datain disk files. We now have three
different kinds of data.

There are the actual news articles. These are just blocks of text and, as in the
program in Section 18.3, we can store them all in asingle file provided we can separate
them (use null, \O', characters) and we know where each begins.

Next, there are going to be index entries, one for each article in the main articlesfile.
Asin the example in Section 18.3, these are going to consist of a set of bits (bit value 1
implies presence of a particular concept in an article, value 0 implies absence), and a
"file address" (record of where an article starts in the main file). We will need a second
fileto hold these index entries.

Finally, we need to have some form of "vocabulary file". The earlier program used
afixed "compiled-in" vocabulary; but that is too restrictive. We now need a file that
contains keywords and numbers. The number associated with a keyword will identify
the concept to which it belongs. So, if for example, concept 25 is the system's
representation of "ape", the vocabulary file should contain entries including "ape 25",
"chimpanzee 25", "gorilla25". (It is assumed that keywords cannot be associated with
multiple concepts; so you can't have concept 25 "ape" and concept 95 "gangster" with
gorilla appearing as both "gorilla 25" and "gorilla 95".) The vocabulary file can be a
simple text file with lines that contain keyword concept number pairs. The program can
build any more elaborate vocabulary structures from thisinput.

Each "information store" thus needs three files. We can keep them together by
allowing the user to define a "basename" for the files, e.g. "travel" or "science", and
create the files with distinguishing suffixes (e.g. "travel.dat", "travel.ndx", and
"travel .vch").

If the user extends the vocabulary then any articles already stored will have to be re-
indexed. The program should deal with this automatically.

The program will load all the vocabulary data and build alook-up structure that can
be used to check whether a word corresponds to one of the concepts. The articles and
index entries will be left in the files. When a search is being performed, each index
entry in turn will get loaded into memory; the user's query can be represented by a
Bitmap structure similar to that used an index entry. Articles that match a search
reguest will just be copied character by character from the data file to the output; they
don't have to be loaded completely into memory. When an article is being added, it gets

Filesfor permanent
data

Data files

Index files

Vocabulary files

Common " base
name" for files

Affect of changing
the vocabulary

Memory resident data
and disk-based data

760

A World of Interacting Objects

Program operation

" Obvious objects"

Userlnteraction
object

Vocabulary object

I nfoStore object

Words?

copied character by character from input file to the data file. Again, the complete
article never has to be in memory. While adding an article, the program will build up a
new index entry and store, temporarily, the current word from the article as was done in
the program in Section 18.3

Thus, the only large memory resident structures will be those used for the
vocabulary.

Normally, the user would be expected to start by building up a vocabulary. This
would probably be done in several separate runs of the program with each run adding a
few more keywords. Once a basic vocabulary had been established, articles might start
to be entered. The user would want to identify atext file with an article. The system
should copy the contents of this file to its data file, at the same time building up an
index record that would then get written to the index file. In any particular run of the
program, the user might add a few articles, and make one or two searches.

Finding objects

Once you have resolved preliminaries like how the files might be organized and how
the program would be used, you can start postulating possible objects.

There are afew "obvious' objects. Asin the last example, the system will probably
use a "UserInteraction" object that organizes most of the processing. Once again, the
main program will do little more than create this User | nt er act i on object and tell it to
"run®.

The User I nt er act i on object will accept commands like "expand vocabulary”, "add
an article", "do a search". The User | nt eracti on object might need to get some
additional information but would deal with most requests by passing them on to other
objects in the system.

Another plausible candidate is a "Vocabulary” object. Something has to own the
keywords and concept numbers. This something has to have organized some fast
lookup mechanism (hash table or tree). This something hasto get the wordsin from the
vocabulary file, and back out to the file whenever extra words have been added during a
run of the program. Words have got to be looked up and concept humbers returned.
There certainly seems to be a group of related data, and larger number of operations on
these data, that could be packaged up in an object that is an instance of some
"Vocabulary" class.

Another possible candidate is an "Infostore” object. Once again, "something” has to
own the three files, and the string that represents the basename of the files. This
"something" can organize opening of the files, keeping track of the length of the data
files and the number of entries in the index file. It can forward user requests for
changes to the vocabulary on to the vocabulary object and perform other organization
roles.

There are several other possible objects. Maybe "Words" should be objects. A
Word object could own a string and a concept number. But there don't seem to be many

Information Store Example: Design 761

tasks for a Word to perform. The Vocabulary object might employ Words, but the rest
of the program would almost certainly just be working with character strings. Words
can beleft for now. They might reappear later on but they don't seem to have sufficient
of aroleto justify consideration during preliminary design.

News articles? No. They certainly don't do anything (other things scramble through
the text of a news article). Although articles may exist as an "objects" in the datafile,
they never really exist in memory. Most processing involving articles works on them
one character at atime.

How about an "ArticleFinder" object? You could argue that this "owns data’' e.g. it
will own the user's query (this will take the form of a set of required and set of
prohibited concept numbers, both represented as bit maps). It will check this query
against each entry in the index file and print those articles that match.

However, an ArticleFinder object doesn't realy have the right feel. Objects are
primarily things that are created dynamically and remain around for a reasonable length
of time (like the RefCards in the last example). If you think how the program would
work, the InfoStore object would create an ArticleFinder each time the user made a
search request. This ArticleFinder would do its stuff. Then it would be destroyed. It
doesn't have the right kind of lifetime. It readly is"just a function" and the data that it
"owns' are really just automatic variables that it uses. So discount ArticleFinder — not
an object. The InfoStore can take on responsibility for finding matching articles; it will
just use agroup of member functions to do this.

Lists? Use as needed. The program will hold in memory just single index records,
single queries. Most of the data are left in the files. The only large collection will be
the words of the vocabulary. We can add alist (or dynamic array) if needed.

Bitmap? Yes. We can reuse class Bi t nap from Chapter 19. An index entry will
contain a bitmap.

IndexEntry? Plausible. If we define an IndexEntry class we have a place to put
related behaviours like checking for matches with other Bi t maps that represent queries.
An IndexEntry will own aBi t map and along integer to record the location of an article.
It can read itself and write itself to file. It can be built up by telling it to set concept
bits. Class| ndexEnt ry seemsto earnitsway.

The "Vocabulary" object will create some hash table data structure. But this
probably would not exist as an independently defined class. If you had a class library
with a "reusable HashTable" you might proceed differently. However, reusable
HashTables are not common. HashTable structures tend to be purpose built for specific
applications with minor variations to adapt to special needs.

The most plausible classes are illustrated in Figure 22.9. As in the RefCards
example, most are "fuzzy blob" classes because we haven't realy defined what any do
or own. Thistime, class Bi t map is the exception. Once again, because it is a known
reusable class it can be shown with firmly defined boundaries.

In this example, the preliminary classes shown in Figure 22.9 did become the final
classes used in the implementation. However, it would not be unusual for changes to be
made during the later more detailed design steps.

News Articles?

ArticleFinder?

Don't go confusing a
function (verb) with
an object (noun)!

Listsand collection
classes

Bitmap

I ndexEntry

HashTable?

762 A World of Interacting Objects

e owns:
- ‘\1
o + an InfoStore

User I nteracti on Does:
Run,

.J“\bF-J} Get Command
?

LN

I ndexEntry
S Y
N~
Owns:

a bitmap

a file location
Does:

File read, wite

set bits

conpare w th ot her

P

I nfoStore
TN

owns:
details of files
Vocabul ary obj ect
data for search request
Does:
Add article
Find article

organi ze changes to

vocab
?
TN —
Bi t map
Vocabul ary
TA* L Y
P array of
owns: unsi gned
wor ds | ongs
hash tabl e
Does:

File read, wite
| ookup word
add word

SetBit()
CearBit()

Figure 22.9 First idea for classes for InfoStore example.
22.2.2 Design and Implementation of the Vocabulary class

As in the previous example, our next task is to elaborate these initial ideas of classes.
Once again, this will involve using scenarios to examine possible interactions among
objects. Although the processing steps involved may be more elaborate, the actual
patterns of interaction are more limited in this example.

This example does illustrate another aspect of the use of objects. An object-based
approach often makes it possible to design and implement parts of a program in total

Information Store Example: Design and Implementation of Vocab

763

isolation. Once the parts have been made to work, you fit them together to make a
whole. It isjust the same process as we have been doing with "reusable classes' like
Dynami cAr r ay, except that the classes developed will only be "used" in atest context
and then "reused" in the final program product.

Separate development of partsis of great practical importance. Most programs are
built by teams. It is obviously more practical for individual team members to work on
clearly separate parts. Separate development helps even if a single programmer is
developing the system. Separate development means that the programmer is writing,
and testing, two or more simple programs rather than one larger more complex
program.

The "Vocabulary" object represents a fairly substantial part of the program. It owns
quite a lot of datain varied forms. It is certainly going to own the actual vocabulary
entry items (concept number and keyword string) and a hashtable structure allowing
fast lookup. It may own other data. It is going to have to do things like add wordsto its
collection and lookup words to see if they are already in the collection. However, it
doesn't need services of other objects and probably it is only the | nf oSt or e object that
ever requests actions by the Vocabul ary object. Thus, it is a good candidate for
separate development.

We have to start by examining scenarios that focus on use of the Vocabul ar y object.
Together these will define the "public interface” for aVocabul ary class. Once this has
been defined, separate development is possible. The design and implementation of the
Vocabul ary class can be completed and verified using alittle test program that exploits
the same public interface.

So, what does a Vocabul ar y object (or, more briefly, a Vocab object) get asked to
do? Firstly, there will be file input and output. Figures 22.10 and 22.11 illustrate
plausible scenarios. Activity will start with the user telling the User | nt er acti on
object to "open" an | nf oSt or e. Thiswill result in an "open store" request being passed
to the I nf oSt or e object. We can ignore most of the activity of | nf oSt ore: :
OpenStore() for now; it will involve getting a "base name" from the user and then
opening of all three files. (Inconsistencies such as only one or two files existing will
terminate the program.) The scenario in Figure 22.10 picks up at the point where the
files have all been opened successfully. The I nf oSt or e object will ask the
Vocabul ary object to load its data from the already opened vocab-file.

The first item in the file might as well be an integer giving the number of words in
the vocabulary. There could be a few thousand words. We want to allow for a few
hundred concepts and each concept might be represented by several different keywords
in the news articles. So we can expect hundreds, possibly thousands, of
keyword/concept number pairs.

We will need something to store these data. As noted earlier, we might use
instances of some classWor d. But at least for the present it appears that we could make
do with a simple struct like the Vocabl t emused in the earlier simpler version of the
program.

Focus on isolable
Vocabulary object

Scenariosfor file
input and output

Vocabl tem struct

764

A World of Interacting Objects

Vocabltems

A dynamic array to
store the Vocabl tems

Separate hash array

InfoStore
obj ect

User I nteraction
obj ect

|

Vocabul ary
obj ect

Dynami cArr ay
obj ect

QpensStore() .

Vocabl tem
obj ect s!

=0 +

Append() I
I 1
I nsert | ntoHashTabl ¢()

loop in
Load()

Figure 22.10 Object interactions while loading a vocabulary file.

A Vocabl t em struct will have a char* pointer and an integer. Function
Vocabul ary: : Load() canhavealoopinwhich it createsVocabl t ens. If these are
just simple structures, then the Vocab object better do the work of reading their data. It
reads a word into a temporary buffer. A new character array can be created (this
operation is not shown in Figure 22.10) and the word gets copied into the new array.
The character array's address can be stored in the new Vocabl t emalong with the integer
concept number also read from file.

We have to store the complete collection of words. We will have to provide a
service like "list all the words with their concept numbers*, and "list all words
associated with concept number ...". So, we will be working sequentially through the
collection.

For this collection we can obviously use an instance of class Dynani cArr ay; it can
be adata member in the Vocab object. Once aVocabl t emhas been created and its data
fieldsfilled in, it can be added to the dynamic array. Thisis shown in Figure 22.10.

We also need the fast lookup version. This will be a hash table of pointers to the
same Vocabl t ems. The array used for hash address will have to be larger than the
maximum number of keywords we expect. We had better arrange to have it created in
the constructor for class Vocab. Once we have read aVocabl t em we haveto add it to
the hash table in addition to the main dynamic array. In Figure 22.10, thisisillustrated
asthecall tol nsert | nt oHashTabl e(). Obvioudy, thisisanon-trivial process. Later
it will get broken down using a "top down functional decomposition” approach. This
more detailed design step will add some other private member functions to class Vocab.

Figure 22.11 illustrates those parts of a A ose() operation that involve the Vocab
object. It will loop, getting the Vocabl t ens from its array and writing their contents to
file. It would be worthwhile checking whether the vocabulary has been changed; there

Information Store Example: Design and Implementation of Vocab

765

is no need to spend time rewriting the file if the existing fileis still valid. Class Vocab
should have some boolean or integer indicator, f Changed , that gets set when words are
added. If thisis not set, the write to file step can be omitted. It is possible that another
lot of data might get loaded into the same Vocab object, so once the current data are
finished with the arrays should be cleared and the existing Vocabl t ens should be

Vocabul ary
obj ect

Nt h()

g

Renove()

ey,

Dynami cAr r ay
obj ect

Vocabl t em

deleted.
User I nteraction I nfoStore
obj ect obj ect
L
] dose() .
Save() I

Save()
Save()

r T]

del ete

Figure 22.11 Obiject interactions while saving to a vocabulary file.

So far, we seem to have:

cl ass Vocab {
public:

Vocab(?);

/*

Fil e support

*/

void Load(f st

void Save(f st

voi d Report St

rean& in);
rean& out);

atus() const;

private:
struct Vocabltem {
short fCNum
char* fWrd;

i

/1 Maybe other data

voi d | ’nsert I nt oHashTabl e(Vocabl t ent) ;

766

A World of Interacting Objects

What else might a
Vocab object do?

InfoStore command
optionsinvolving a
Vocab object

i nt f Num\r ds;
i nt f NumConcept s;
i nt f Changed;

Vocabl t em **f HashTabl e;

Dynam cArray fThl;
b

Here it has been assumed that Vocabl t emis essentialy a private struct used only by
class Vocab. It would be useful for the Vocab object to maintain counts of the number
of keywords and concepts that it had defined; hence data members like f Numér ds. A
Report Status() member function might be useful. It could print out details of the
number of keywords and the number of concepts.

The hash table is an array of pointers to Vocabl t ens. Since it isadynamically
alocated structure located somewhere in the heap, the type of f HashTabl e is pointer to
(an array of) pointer(s) to Vocabl t ems, or Vocabl t ent*. (Thisis as discussed
previously in Chapters 20 and 21.)

Now that we can load a Vocab object from adisk file, what should we do with it?

TheUser I nt er act i on object will offer abasic menu of commands like "do search”,
"do addition of article", and "do vocabulary operations'. These will results in requests
to the I nf oSt or e object to do the search, or addition, or organize vocabulary options.
In the case of vocabulary modifications, the | nf oSt or e object will probably present the
user with akind of submenu. The commands will be thingslike:

¢ Concept
Add new concept by giving the first keyword. (The Vocab object should allocate a
new concept number).

« Word
Add another word for an existing concept. The user would then have to enter the
concept number and the new keyword (system should check the number isin
range).

e Ligt
List all concepts or words. There would have to be another prompt to find whether
the user want a printout showing all words, or just those associated with a
particular concept number (or, maybe, alist arranged by concept number).

o Test
Test whether word is associated with aconcept. Thisisrealy just a"lookup”
operation on aword provided by the user.

The keyword/concept-number ideais not very well defined. Really, the only difference
between adding a concept and adding an alternative keyword is that for a"concept" the

Information Store Example: Design and Implementation of Vocab

767

Vocab object selects the next possible concept number whereas for a keyword the user
has to specify an existing concept number.

The Vocab object could check that the user doesn't request a new concept or
keyword and then enter aword that already exists. However, the user can do this check
anyway by using the Test option to check aword before trying to enter it.

These different tasks involve three basic patterns of interactions among the objects.
None seem sufficiently elaborate to merit an object interaction diagram.

The first pattern is a "creational pattern” which will get used for the Concept and
Word commands. The | nf oSt or e object gets the necessary data from the user (atext
string, and in the case of the Word command the input will also contain a concept
number). The I nf oSt or e invokes member functions Vocab: : AddNewConcept () or
Vocab: : AddExt rawr d() . Thesefunctionsbuild anew Vocabl t em and then add it to
both the hash table and the dynamic array. The functions had better return integer error
codes. There will be alimit on the number of concepts; there may be other constraints
that could cause these operations to fail.

The I nf oSt or e object had better check the validity of any concept number entered
with an extra keyword. It can pass the number entered by the user to the Vocab object
to check; this could be done before any call to AddExt r aWor d() . So class Vocab had
better provide a CheckConcept Nun{) member function.

The additional parts of class Vocab's public interface identified by considering these
interactions are:

i nt Vocab: : CheckConcept Nun{i nt concept nun) const;
int Vocab: : AddExt r awr d(const char awrd[], int conceptnun;
i nt Vocab: : AddNewConcept (const char firstWrd[]);

The various suboptions under List would all be handled by the | nf oSt or e object
asking the Vocab object to perform a specialized listing operation. The Vocab object
would work using aloop that looks at successive Vocabl t ens from its dynamic array
and prints the appropriate ones. Listing al words is easy; the loop in aLi st Wor ds()
function simply prints every Vocabl t em A list of all Vocabl t ens associated with a
given concept number requires only an extratest and the same basic loop structure; this
can be handled using a Vocab: : Li st Concept (i nt concept nun) member function.
Listing the keywords for each concept in turn could be handled by a function,
Li st Al | Concept s(), that has aloop working through al concept numbers calling the
Li st Concept Nun() function for successive numbers. Of course this means running
through the array many times. This may be a bit costly, but there is no need to look for
more efficient schemes, like sorting by concept number, because the execute-time is
going to be determined almost entirely by the printing processes. More elaborate
schemes would just add code but not produce any noticeable change in performance.

The"listing" options require the following additional functions:

voi d Vocab: : Li st Concept (i nt concept nun) const;
voi d Vocab: : Li st Al Concepts() const;

Creational patterns
for Vocabl tems

Iterating through the
dynamic array

768

A World of Interacting Objects

Lookingupawordin
the hashtable

Other interactions
involving Vocab
object

Completing the
public interface

voi d Vocab: : Li st Wrds() const;

The Test command will require that the Vocab object identify the concept number
associated with a given keyword. 1t will need afunction like:

voi d Vocab: : I dent i f yConcept (const char aWrd[]) const;

Thiswill print details of the concept number, or report that the keyword is not known.

The Vocab object will also be used when generating index records for new articles
and creating queries. Probably, both these requests will come from the | nf oSt or e
object. They require the same function, it will be given the word to look up, and will
return an integer concept number (a code like -1 could be used to indicate that the word
is not defined).

int Vocab: : Lookup(const char aWrd[]) const;

Of course, at least one Vocab object gets created so a constructor had better be
defined. It would probably be useful if the program could specify a default size for the
vocabulary. Other arguments for the constructor might be identified later.

If al the interactions involving Vocab objects have been identified, then we have
completely characterised the public interface for the class.

cl ass Vocab {
public:
Vocab(int VocabSi ze);
/*
Fil e support
*/
voi d Load(fstrean& in);
voi d Save(fstrean& out);
/*
St at us
*/
voi d Report Status() const;
i nt CheckConcept Nun{i nt concept nun) const;

/*

Checki ng and addi ng wor ds

*/

i nt Lookup(const char aWwrd[]) const;

i nt AddExt r aWr d(const char aWwrd[], int conceptnunj;
i nt AddNewConcept (const char firstWrd[]);

/*

Getting info on concepts

*/

voi d Li st Concept (i nt concept nun) const;

voi d Li st Al | Concepts() const;

voi d I denti f yConcept (const char aWrd[]) const;

Information Store Example: Design and Implementation of Vocab

769

voi d Li stWrds() const;
privat e:

b

It is now possible to complete the design, implementation and testing of this class.
There is no need to build an | nf oSt or e class. A simple interactive test program can
easily be written to exercise the various member routines.

Detailed design, implementation, and test of class Vocab

What remains?

The remaining design work will involve minor choices on detailed representation of
the data and probably some further functional decomposition for the more elaborate
member functions.

The index entries for the file are to use class Bi t map. This alows chosen bitsto be
tested. It stores 512 bits, numbered 0...511. The number of concepts should be limited
to 512. Internally, concept numbers should be represented by integers in the range
0...511 but it would probably be best if the user saw these as 1...512 (this means that
there will have to be conversions on input and output).

The argument for class Vocab's constructor can be used to define the initial size for
the dynamic array (thiswill involve aminor C++ feature not previoudly illustrated). By
default, the dynamic array only grows by 5 elements; that will be too small, a larger
increment should be defined, maybe 25% of the initial size.

We don't want the hash table becoming full. It will probably be worthwhile defining
a maximum size for the vocabulary (some multiple of the initial size) and refusing to
add words once this size is reached. If the hash table is made dlightly larger, we can
guarantee that it never becomesfull. The entriesin the hashtable will either be NULL or
pointers to Vocabl t ens created in the heap and also referenced from the main dynamic
array.

Most of the functions should be straightforward. The listing functions just involve
loops accessing successive Vocabl t ens in the dynamic array. The hashtable functions
(Test (), Lookup() , AddExt r aWor d() , and AddNewConcept ()) will use code similar to
that illustrated earlier in Chapters 18 and 20.

Hash keys are going to have to be computed for the various strings. The code will
be the same as that illustrated previously (Section 18.2.1) but it should now take the
form of a private member function for class Vocab:

unsi gned | ong Vocab: : HashStri ng(const char str[]) const;

Although a good hashing function, it is relatively expensive because of its loop through
all the charactersin astring. It might be worth saving the hash keysin the Vocabl t ens.

Concept numbers

Array sizes

Another private
member function

770 A World of Interacting Objects
This would avoid the need to recompute the keys for al the words when the files are
reloaded. Consequently, we might redefine Vocabl t emas follows:
struct Vocab: : Vocabl t em {
unsi gned | ong fKey;
short fCO\Num
char* fWrd;
¥
Implementation
Constructor - The constructor has the following form
Vocab: : Vocab(i nt vocabsi ze) : fTbl (vocabsi ze, vocabsi ze/ 4)
{
fNumMrds = f NunConcepts = f Changed = 0;
fTbl Sl ze = 5*vocabsi ze;
f MaxWor ds = 4*vocabsi ze;
f HashTabl e = new Vocabl tent [fTbl Si ze];
for(int i=0;i < fThl Size; i++)
fHashTabl e[i] = NULL;
}
The bit in bold illustrates the extra feature of C++ —initialization of data members that
areinstances of classes with their own constructors.
Datamembersthat \We have already had classes that had data members that were instances of other
are'”Sta”C$°£|°ther classes; after all, in the RefCards example, the CardCol | ecti on object had a
Dynami cArray. Butin the previous examples we have been able to rely on default
constructors. The default constructor for a Dynani cArray gives it ten elements, so
Car dCol | ecti ons start with an array of size ten. With Vocab objects, we want the
Dynanmi cArray to start at some programmer specified size, so we can't just leave it to
the default constructor.
Data members that C++ allows you to pass arguments to the constructors for any data members that
hazgr:g%c?gr; require such initialization. These data member constructors get executed prior to the

Filel/O

body of the class's own constructor. They have to be specified as shown above. They
are separated from the argument list of the constructor by a colon (:), and are listed
before the opening { bracket of the body.

In this example, the f Tbl data member (the Dynani cAr r ay) isinitialized using the
Dynam cArray(size, increnent) constructor.

The hash table is made 25% larger than the maximum number of words. Thusit can
never be more than 80% full and so the simple linear probing mechanism will work
quite satisfactorily. The element of the hash table need to beinitialized to NULL.

ThelLoad() and Save() functionsareasfollows:

voi d Vocab: : Load(fstrean& in)

Information Store Example: Design and Implementation of Vocab 771

{

f Changed = f Numrds = f NunConcepts = 0;

in > f Numr ds;

if(in.eof()) { in.clear(); return; }

i f(fNumords > f MaxWrds) { Checkson file
cout << "Problens with file. Seens to have too many" contents

"words." << endl;

exit(1);
}

in >> f NumConcept s;

i f (f NumConcepts >= kMAXCONCEPTS) {
cout << "Bad data in file." << endl;
exit(1);

for(int i=0; i < fNumWrds; i++) { Loop creating
Vocabl tem *v = new Vocabl t em Vocabl tems
i f(!in.good()) break;
in >> v->fKey >> v->f O\um
char | word[100];
in >> |word;
v->fWrd = new char[strlen(lword) + 1];
strepy(v->fWrd, [word);
f Thl . Append(Vv); Add Vocabltemsto
I nsert | nt oHashTabl e(v); both arrays
}

if(lin.good()) {
cout << "Sorry, problens reading vocab file.

"Aving up" << endl;
exit(1);
}
}

The file used for the vocabulary isreally a simple text file. Consequently, a user may
edit it with some standard editor or word processor. The Load() routine hasto do
some checking to validate the input. The main part of Load() isthe loop where the
new Vocabl t emstructs are created, their data are read in, and they are then added to
both the dynamic array and the hash table.

Function Save() is called when the program has finished using the current datain
the Vocab object. If changed, the updated data should be saved to file. All existing data
structures have to be cleaned out.

voi d Vocab: : Save(fstrean& out)

if(fChanged !'= 0) {
out << fNuMWrds << " " << fNunConcepts << endl;
for(int i=1;i<= fNumrds; i++) {
Vocabltem *v = (Vocabltent) fThl.Nh(i);
out << v->fKey << " " << v->fONlUM<< " " <<
v->fWrd << endl ;

772 A World of Interacting Objects

} }

for(int j =0; j < fThl Size; j++) fHashTabl e[j] = NUL;

for(j = fNumMrds; j>0; j--) {
Vocabltem*v = (Vocabltent) fTbl. Renove(j);
delete [] v->fWord; // Get rid of the string
del ete v; /! and the structure
}

f Changed = f Num@rds = f NumConcepts = 0;

}
Tidying up is hard work!
Simple access Functions like Repor t St at us() (print details of humber of words and concepts),

functions

Listing functions

Vocabulary extension

and CheckConcept Nun{i nt nun) (check value against f NunConcept s) areal trivia
so their code is not shown.

The listing functions are generally similar, Li st Concept () isshown hereasa
representative. After checking its argument, it has aloop that works through successive
elements of the Dynami cArray (requestf Tbl . Nt h(i) returns the i-th element). The
Vocabl t emaccessed viathe array is checked, and if it is associated with the required
concept its string is printed. (The code assumes that the concept numargument is
defined in the internal 0..N-1 form rather than the 1...N form used in communications
with the user.)

voi d Vocab: : Li st Concept (i nt concept nun) const

i f((conceptnum< 0) || (conceptnum >= fNumConcepts)) ({
cout << "No such concept nunber." << endl;
return;

}

/*

As output for user, change to user-nunbering of concepts
(1...N) rather than internal 0...N 1.
*/
cout << "Wirds mapped onto concept: #' << (concept humtl)
<< endl ;
for(int i =1; i <= fNumrds; i++) {
Vocabltem*v = (Vocabltent) fThl.Nh(i);
i f(v->fCO\Num == conceptnun) cout << v->fWrd << endl;
}
}

The functions that extend the vocabulary are:

int Vocab: : AddExt raWrd(const char aWwrd[], int conceptnun

i f(fNumrds == f Max\Wor ds)
return O;

f Numor ds++;

f Changed = 1;

Information Store Example: Design and Implementation of Vocab

773

int

}

If the vocabulary is not already full, AddExt r awr d() createsanew Vocabl t em fillsit
with the given data and adds it to the hash table and the dynamic array. Function
AddNewConcept () uses AddExt rawerd() while providing the concept number; the
count of concepts isthen updated. These functions mark the vocabulary as changed so

Vocabl tem *v = new Vocabl t em

v->f CNum = concept num

v->f Key = HashString(aWrd);

v->fWrd = new char[strlen(aWrd) + 1];
strepy(v->fWrd, awrd);

f Tbl . Append(V);
I nsert | ntoHashTabl e(v);
return 1;

Vocab: : AddNewConcept (const char firstWrd[])

i f ((fNunConcepts == kMAXOCONCEPTS) | |
(fNum\Wrds == f MaxWrds)) return 0O;

AddExtraVWr d(firstWrd, fNumConcepts);

f NunmConcept s++;

return 1;

that alater call to Save() will result in transfer to disk.

The code for the hash functions can be based on that in earlier examples. A
representative function from this group is | nsert | nt oHashTabl e(). Thissimply

reworks earlier hash table insertion code.

voi d Vocab: : I nsert | nt oHashTabl e(Vocabl t ent v)

{

unsi gned | ong k = v->f Key;
k = k %fThl Si ze;

int pos = k;

int startpos = pos;

for(;;) {
i f(fHashTabl e[pos] == NULL) {
f HashTabl e[pos] = v;
return;

}
/*
Shoul dn't get dupli cates.

Maybe shoul d report this as an error.
*/

if(0 == strenp(v->fWrd, fHashTabl e[pos]->fWrd))

return;

pos++;
if(pos >= fThl Si ze)

Calculate and save
hash key

Hash functions

774

A World of Interacting Objects

Test

With class Vocab defined, we need atest program. Thiswill smply be another of those
small interactive program where the user is given a menu of commands like "add a

word", "list concept" and so forth. Small auxiliary routines will prompt the user for any

i f (pos

pos -= fThl S ze;

== startpos) {

/*

QOPS! Thi s shoul d never happen.

The hash tabl e shoul d never becone full; entry
of words is supposed to be restricted so max
80% full .

*/

cout << "Error in hashing functions of Vocab."
<< endl ;

exit(1);

}

necessary data and invoke the appropriate operations on an instance of class Vocab.

This "scaffolding" code belongs with the Vocab class and should be considered as

part of the class's documentation.
Part of the mai n() function of thistest programis:

#-il ncl ude "Vocab. h"

Vocab gv(1000);

int main()

fstreamtestfile("testfile", ios::in | ios::out);
gv. Load(testfile);
gv. Report Status();
int done = 0;

for(;

case 'q':
case 'c':
case '|':
case 'WwW:

done ;

) |

cout << "Enter command : ";
char ch;

cin >>

ch;

ch = tol ower(ch);
swi tch(ch) {

done =

1; break;

AddConcept (); break;

List();

br eak;

Addverd(); break;

Information Store Example: Design and Implementation of Vocab 775

case 't': TestWrd(); break;
case '?': cout << "Commands are" << endl;
cout << "\tl List all concepts or words.

<< endl;

cout << "\tq Quit" << endl;
br eak;
defaul t:
cout << "? Unrecogni zed command " << ch << endl;
br eak;

}

gv. Save(testfile);
testfile.close();
return O;

}

An example of the auxiliary functions needed is:

voi d AddWrd()

cout << "Enter concept nunber for which you want an"
"addi tional keyword : ";

int n;

cin > n;

/*

convert fromuser 1..Nrepresentation to 0..N1

*/

i f(!gv. CheckConcept Nun{n-1)) {
cout << "That nunber doesn't correspond to a "

"defined concept." << endl;

return;

}

cout << "Enter extra keyword : ";
char awWrd[40] ;
cin >> aWwrd,
i f(gv. AddExt r aWord(aWrd, n-1))
cout << "CK, added." << endl;
el se cout << "Sorry, vocab. full, can't add." << endl;

22.2.3 Other classes in the InfoStore program

With class Vocab completed and tested, development of the rest of the system could
resume. Asillustrated in Figure 22.12, the situation has changed. Now class Vocab can
be treated as a predefined "reusable" component.

776 A World of Interacting Objects

—ljfik owns:
. LN an InfoStore

User I nteracti on Does:
Run

‘*‘i‘$; ‘t Get Command
?
~

"~ _4"‘\.“ ,"'_J‘ M
| ndexEntry InfoStore
) * e Y

‘1‘,ﬂ*aﬁ LH;»'et
OW”%E owns:
af!rmr’ . details of files
a f e location Vocabul ary obj ect
Does: _ data for search request
File read, wite D .
. oes:
set bits . Add article
conpare w th ot her Find article
organi ze changes to
vocab
?

(— Vocab) (Bitmap)
hasht abl e, array of
counts, ... unsi gned

| ongs
L -
AddExt r aWr d() SetBit()
dearBit()

Lookup()

Figure 22.12 Revised model for classes.
Class UserlInteraction

Class User | nt er acti on won't present many problems. This class, and the mai n()
function, will be similar to the corresponding parts of the previous example. We might
aswell use the same main program. So we can expect class User | nt er act i on to have
the same public interface and parts of the same implementation structure as last time:

class Wserlnteraction {
public:
User I nteraction();

Information Store Example: Design, other classes

7

void Initialize();
voi d Run();
voi d Termnate();
private:
voi d Hel p();
char Get Command() ;
/1 and maybe sone changed stuff!

b

Function Run() will present the user with a menu of options and function Hel p() will
provide some explanation of the options. There will have to be some additional private
auxiliary member functions that deal with the top level commands (like "Add article")
by doing some validity checks, or getting some data, and then calling an appropriate
member function of the I nf oSt or e object.

Thistime, class User | nt er acti on is going to have to own an | nf oSt or e object
rather than a Car dCol | ecti on object. It doesn't much matter whether it has an
I nf oSt or e datamember or an | nf oSt or e* datamember. If apointer data member is
used, as in the RefCards example, the data object can be created in the
User | nteracti on constructor. However, this time we will make it an actual
I nf oSt or e object.

In the RefCards example, function User I nteraction: : I nitialize() openedthe
datafile, while Ter mi nat e() closed thefile. You could only move from one RefCard
collection to another by exiting and restarting the program. It might be worth making
operations a little more general.. We could have "Open" and "Close" commands in the
menu offered in Run() . If no set of filesis open, the only commands available would
be "Open" and "Quit". If aset of filesis open, the commands would be "Quit", "Add
article", "Search", "Change Vocabulary" and "Close". (The prompt for a command
should indicate the system's state; the User | nt er act i on object should probably have a
data member, f St at e, to indicate its open/closed state.)

The codefor User | nt eracti on: : Run() will haveto be aong the following lines:

void Wserlnteraction::Run()

{
int done = O;
cout << "Enter commands, ? for hel p" << endl;
for(; !done;) {
if(fState == 0) cout << "(closed) > ";
el se cout << "(open) > "
char command = Get Command();
swi t ch(command) {
case '(' done = 1; break;
case '?' Hel p(); break;
case 'a' DoAdd(); break;
case 'c' Dod ose(); break;
case '0' DoQpen(); break;
case 's' DoSearch(); break;

InfoStore data
member

778

A World of Interacting Objects

case 'V' : DoVocab(); break;
defaul t :
cout << "Command " << command << " not"
"recogni zed" << endl;
}

}

The auxiliary functions like DoSear ch() will defer most work to the | nf oSt or e
object:

void Userlnteraction:: DoSearch()

if(fState == 0) {
cout << "You have to have an Information Store open"
<< endl ;
cout << "if you want to search!" << endl;
return;

}
f St ore. DoSear ch();
}

The remaining functions should all be easy to code. There may not be anything to
doinTerminate() andlInitialize(). They gotincluded as a move towards a
standard User | nt er act i on class. Thesetwo examplesin this chapter with their similar
structure and User | nt er act i on classes provide, in avery limited way, amodel for the
more elaborate programs that can be built with the framework class libraries introduced
in Part V. Inthose libraries, you will find standardized classes that accept commands
from a user and route these to appropriate data objects.

Classes InfoStore and IndexEntry

InfoStore

The real work in this program is done by | nf oSt or e along with its helpers Vocab and
I ndexEntry. Class| nf oSt ore has to deal with a variety of requests from the
User | nteraction object. We know that the Vocab object doesn't need to make
requests to the I nf oSt or e object, and it is pretty unlikely that the | ndexEnt ry objects
will need to ask anything of the | nf oSt or e. Consequently, the class's public interface
will be determined entirely by the needs of the User | nt er act i on object. We can
therefore sketch it in now:

class InfoStore {

public:
I nfoStore(int VocabSi ze = 1000);
i nt enStore();

Information Store Example: Design, other classes 779
voi d d ose();
void ChangeVocab() ;
voi d AddArticle();
voi d DoSear ch() ;
private:
f stream fI ndexFi | e;
fstream f VocabFi | e;
fstream fDataFil e
Vocab f Vocab;
| ong fNumArti cl es;
¥
The public functions are just those called from member functions of User | nt er act i on.
The private data members shown have aready been identified. Thel nf oSt or e object
is supposed to own the files, since they are used for both input and output they will be
f st reamobjects. Thel nf oSt or e need aVocab object; it seems likely that it should
have a count of the number of articlesin thefiles.
There will be many additional private auxiliary member functions. The extra
member functions will get identified as the known functions, like AddArticl e(), are
developed using "top-down functional decomposition”.
Function OpenSt ore() has to either successfully open a set of three existing files, OpenStore()
or if none exist it should create a new set of threefiles. It should terminate the program
if it cannot get a complete set of files. If it is able to open existing files, then this
function should have a call asking the Vocab object to load the Vocabl t ens as
previously discussed.
Function ChangeVocab() will end up very much like the little test program written ChangeVocab() —
to check class Vocab! It will have a similar prompting function that gets user ?:;gfg%rble;;)‘f’“tte”

commands ("add word", "list concept", etc), and similar auxiliary functions to organize
things like the listing of concepts.

The I nf oSt or e object will have to have its own flag data member to indicate
whether the vocabulary has been changed recently. The Vocab object already keeps
track of whether it has been changed at all since its data were loaded, and uses this to
determine whether to save its data when it gets closed. The I nf oSt or e object has
rather different concerns. It must prevent searches of files, or closing of files, if the
index entries haven't been updated to match any changes in the vocabulary.

An| nf oSt or e object should set its flag data member when it asks its Vocab object
to add aword. It should check this flag when asked to search or closefiles. If itsflagis
set, it should first go through all the index records and articles in its files. It has to
repeat the indexing process by reading each article from the | nf oSt or e'smain datafile,
updating the index entry and rewriting the updated index entry to the index file. The
process is similar to that involved in the addition of a new article as described in more

Another
VocabChanged flag?

Responsibility for
updating index
entriesif vocabulary
changes

780 A World of Interacting Objects
detail below. Once the articles have been reindexed, the | nf oSt or e object can clear its
version of the "vocabulary changed” flag.
AddArticle

DoSearch

Function AddArti cl e() will start by prompting the user for the name of afile. It
must then copy the content of the article to the end the data file, at the same time
building up an index entry. Each word read during this copying process must be
checked; any that are keywords should cause the new index entry to be updated. The
interactions involved in this process are outlined below.

Function DoSear ch() had better start by checking whether the file contains any
articles. If the data files do contains some articles, this member function has to get the
query from the user. Queries consist of three parts. First there is the set of required
concepts. A loop will be used to get the user to enter required keywords (the function
should warn about any words entered that aren't keywords); these will be used to build
up a bitmap of required concepts. The second data item is the minimum number of
concepts that must match. The third item would be another set of keywords (really
concept numbers) that should not be present. Once the query has been assembled, it
must be checked against | ndexEnt rys read from the index file. Matches result in
display of articles. Again, the interactions are outlined in more detail below.

IndexEntry

The previous slightly simpler version of this program, in Section 18.3, used some ad
hoc structures to represent index entries. Although an index entry is really a composite
involving a bit map and a file location, the previous representation had an array of
unsigned longs and a separate long integer data element. There was no packaging of
the operations on these data, the code was scattered through the other functions. With
classes, we can do better.

We can now have class | ndexEnt ry. This will package the data and related
functions. We know some of the things an | ndexEnt ry must do. Anl ndexEntry is
going to have to transfer itself to/from file; thisis going to be a binary transfer as they
are supposed to be represented as fixed size blocks of bitsin the file. An | ndexEntry
gets built up — literally bit-by-bit. When an article is processed, the concepts it contains
are identified and the | ndexEnt ry istold to set the corresponding bit in its bitmap. It
also has to be told to note the location of an article.

These known behaviours provide afirst outline for class| ndexEnt ry:

class IndexEntry {
public:
I ndexEntry();
voi d Load(fstrean& in);
voi d Store(fstrean& out);
voi d SetBit(int bitnum;
voi d Set Locat i on(unsi gned | ong where);

private:

Information Store Example: Design, other classes

781

Bi t map fBits;
unsi gned | ong flocation;

b

The Bi t map data member will be an instance of the class developed in Chapter 19;
those Bi t map objects deal with things like clearing all bits, setting individua bits, and
writing bit data to the file. So alot of an | ndexEnt ry'swork can be delegated to the
Bi t map object that it owns.

Class | ndexEnt ry will have some additional responsibilities related to checking
matches with search queries. These will be added later when they have been more
clearly identified.

Adding or re-indexing articles

Figure 22.13 illustrates the interactions among objects when an article is added of its
index entry updated to reflect changes in the vocabulary.

InfoStore I ndexEntry Vocabul ary
obj ect obj ect obj ect
1
ProcessText ()
—
’ Get Word(..)
loop in ‘ Lookup(..)
ProcessText () .
_/ SetBit(.) I

Figure 22.13 Obiject interactions while adding articles to information store.

Class | nf oSt or e will have aProcessText () private member function that deals
with the detail of the indexing operations. It will have to take as arguments the input
file (could be atext file with asingle article or the existing datafile), an | ndexEnt ry to
update, and a flag to indicate whether it is copying the data from the file or simply
updating the I ndexEnt ry. The function that calls Pr ocessText () had better set the
input file so that it is at the correct position for reading (this would be the start of a new
text file, but at the location of an existing article the index entries are being updated).

If it isanew article that is being added to the collection, the | ndexEnt ry should
already have been initialized with all its bits zero, and its f Locat i on field set to contain
the current end point of the data file (the place where the copy of the new article will
start). Since the vocabulary always expands, the only changes will be new words and

782

A World of Interacting Objects

Coding a new article

Fixing up existing
index entries after a
vocabulary change

concepts. Consequently, there is no need to reinitialize the | ndexEnt ry when an article
that is being re-indexed; the existing bits in the index bit map won't change, maybe a
few more bitswill get set.

Function Pr ocessText () will contain a loop that gets words from the file; class
I nf oSt or e had better have another private member function Get Wor d() .

whi l e(CGetWord(..) {
int concept = fVocab. Lookup(awerd);
i f (concept >=0)
article_ndx. SetBit(concept);
}

The Get Wor d() function will be similar to the function in Section 18.3; it will need an
extra flag argument to indicate whether the characters are to be copied as well as built
up into words. The "words" get filled into a character array that would be a local
variable of ProcessText ().

Each "word" would have to be checked. Hencethe call to the Lookup() function of
the Vocab object. If Lookup() returnsavalid concept number, the | ndexEnt ry will
have to be told to set this corresponding bit (thecall to Set Bi t ()).

The ProcessText () function gets executed in two circumstances. First the
I nf oSt or e object may have been told to add an article. The operations needed in this
situation would be:

Initialize a new IndexEntry, zeroing out its bit map

Make certain data file is positioned so that wites append data
after all existing data

Note current end position in | ndexEntry

Call ProcessText (specify data to be copied, input from new

text file)
Wite a null character to the data file to mark the end of the
article.

Wite the newindex entry at the end of the index file.
Update record of nunber of articles.

Alternatively, the | nf oSt or e object may be fixing up all itsindex records before doing
asearch or closing the files. The operations need in this context would be:

for each article in collection

Load existing index entry

Find where related article starts

Position data file so character read operations begin at
articles

Call ProcessText (specifying no copying, input fromdata
file)

rewite updated index entry inits original position in
the index file

Information Store Example: Design, other classes

783

Class | nf oSt or e will need additional private member functions that organize these
operations.

voi d InfoStore:: CodeArticle(fstrean& infile);
voi d I nf oSt ore: : Fi xupRecords();

Function CodeArti cl e would be called from the main AddArti cl e() function that
opens a user-specified file with the additional news article. Function Fi xupRecor ds()

would be called the Cl ose() function (to make certain that set of index, vocabulary,
and article files are consistent), and before searches. Obviously, it would start by
testingthe | nf oSt or e: : f VocabChanged flag variable to determine whether there was
any need to update the files (and it would clear this flag variable once the files had been
remade).

Searches

Asnoted earlier, the DoSear ch() function would have to start by making certain that a
search operation was valid (file contains articles, al files consistent). Then it would
build up the query structure. Finally, it would have a loop that involved checking each
IndexEntry from the index file against the query; articles corresponding to matching
gueries would be printed. The code for DoSear ch() would be along the following
lines:

if(fNunArticles == 0)
report search not worthwhile, and return

call Fi xupRecords to nmake certain files are consistent
Build a Bitnmap that represents the set of concepts required
Fi nd m ni mum nunber of matches required

Build a second Bitmap representing unwanted concepts
Position index file at start

for each entry in file do
| oad index entry

test | oaded entry agai nst Bitmap representing excl uded
concepts, if any present then don't further check

count nunber of matching concepts in index entry and
Bitmap representing the required concepts

if match at | east the required nunber
print article starting at location in index entry

InfoStore::
DoSearch()

784

A World of Interacting Objects

Building a bit map
that representsa
query

Extensionsto class
I ndexEntry

Asusual, this outline implicitly identifies a number of auxiliary functions; these will all
become private member functions of class | nf oSt or e.

There would have to be two auxiliary functions that build Bi t map objects. A
Bi t map for a query must have at least one bit set; so a Get Query() function would
need to have a loop that kept prompting the user to enter "search terms"; something
along the following lines:

Bi t map €;
pronpt for search terns
do {

I nput a word

key = fVocab. Lookup(word);

if(key < 0) cout << "(not used)" << endl;

el se {
cout << "(Concept #" << key+l << ")" << endl;
e. Set Bi t (key);

} while (count of concepts in query <1
or user specifies another keyword);

As shown, the function should identify the concept numbers associated with the words
entered so that the user will know whether a proposed query involves multiple concepts
or whether all the keywords entered happen to map onto a single concept number. Two
more simple private member functions would appear useful — something to input a
word, and something to get a"yes/no" response to a prompt like "Do you want to enter
another word?'. When aBi t map representing a query has been built, another auxiliary
function can prompt the user for the minimum number of matches (it should check the
query Bi t map, if thereisonly one bit set then there is no need to ask the user).

The function to get excluded words would be generally similar. The loop structure
would be changed dlightly because an empty Bi t map isvalid in this context.

The extra functions need for class | nf oSt or e could be:

Bi t map I nfoStore:: Get Query();

Bi t map I nf oSt or e: : Get Excl ude() ;

int I nf oSt ore: : Get Requi redNun{ const Bitnap&);
voi d InfoStore:: I nput Wrd(char aWrd[]);

int InfoStore:: YesNo();

Searches necessitate some extra member functionsin class| ndexEnt ry:

int | ndexEnt ry: : CheckNoGonmonHE errent s(const Bi t map& bad) ;
int | ndexEnt ry: : Count CormonHEl enent s(const Bi t map& good) ;
unsi gned | ong I ndexEntry:: Location() const;

The first function verifies that there are no bits in common between the | ndexEnt ry's
own Bi t map and that given as an argument; this is used to filter out articles with

Information Store Example: Design, other classes 785

excluded keywords. The second checks the number of bits that are in common.
Finaly, class | ndexEnt ry must provide read access to the details of the location its
news article. These functions are trivial to implement as all the necessary bit

manipulations are provided by classBi t map.

22.2.4 Final class design for the InfoStore program

The final designs for classes | nf oSt or e and | ndexEnt ry are shown in Figures 22.14

and 22.15.
r
class InfoStore class name
fstreamf1ndexFil e; private data
f stream f VocabFi | e;
fstreamfDataFile;
Vocab fVocab;
long fNumArticles;
int fVocabChanged;
e \ public interface
InfoStore(int VocabSi ze = 1000); constructor
int CpenStore(); Load/Save Vocab and related
voi d Qose(); processing
void Changevocab(); Main functions used by
void AddArticle(); . .
Userlnteraction object
voi d DoSearch();
.
_ I
TryMakeNewi | es(.) ; Opening set of three files
Fi xupRecords();
Test Vord(); Reindexing existing articles
AddWr d() ; A . tensi to Vocab
AddConcept () ; rranging extensions to Vocal
List();
CodeArticle(.);
ProcessText (.); List details of Vocab
Get Vord(..); . .
PrintAticle.); Addition of articles
I nput Vord(..);
YesNo(); ’
Bitmap GetQuery(); Handling query

Bi t map Get Excl ude();
Get Requi redN\ung ..);

.

J

Figure 22.14 Final design for class InfoStore.

786

A World of Interacting Objects

class IndexEntry

Bitmap fBits;
unsi gned | ong flocation;

class name

private data

Ve

I ndexEntry();

voi d Load(fstrean& in);
voi d Store(fstrean& out);
void SetBit(int bitnun);

unsi gned | ong Location() const;

\-

\ public interface

constructor
File transfers

Setting data members

voi d Set Locati on(unsi gned | ong where);

Comparisons with Bitmaps

int CheckNoConmonEl enent s(const Bit nap& bad);
int Count ConnonEl enent s(const Bi t nap& good) ;

Access to article location

e

- J

Figure 22.15 Final design for class IndexEntry.

EXERCISES

1. Complete the implementation of the InfoStore program.

