
22 A World of Interacting
Objects
The two examples in this chapter illustrate the "world of interacting objects" that is
typical of a program built using classes. They give you a practical model for an
alternative to the "top-down" design approach used extensively in Part III. The
examples also illustrate slightly simplified, informal versions of some of the schemes
that are commonly used to document more elaborate object based programs.

The first example, "RefCards", is a little bit like the example in Section 17.3. In that
example, a program manipulated "customer records" that contained data such as
customer name, and amount ordered. Actually, that program manipulated a single
structure in memory; the rest of the records were in a file. When a record was needed,
it got loaded into memory. Now we can use things like an insane of a standard "list"
class to hold a collection of records in memory, transferring these records to and from
disk only when the program finishes and is restarted. The data records this time are
"reference cards" – the sort of thing used to keep references to papers when you are
doing scientific research. These records contain things like "authors' names", "paper
title", "journal", and "page numbers". Although the RefCards program has some
similarities to the earlier example, the use of classes in its design results in an
implementation that is beginning to show a quite distinct structure.

The second example is an object-based reworking and elaboration of the
"information retrieval" example from Section 18.3. That version of the program
allowed the user to build up files containing newspaper articles, with an index based on
a predefined set of keywords defined by an initialized data array. It used two programs.
One added data to the file; the other performed single searches. Now we need
something more general.

The program is to allow the user to define the "vocabulary" of keywords (as in the
earlier example, it is actually a vocabulary of concepts as several different words can
map onto a single concept used in the index). This vocabulary is to be extendible. If
the user thinks of a new concept, or an additional word that maps onto an existing
concept, then the system must allow this word to be added. This makes the system

22

Refcards example

Infostore example

726 A World of Interacting Objects

more flexible. It is not limited like the original to scientific articles. If you want a
collection of travel articles, you simply make up a suitable vocabulary and start saving
data.

The programs are also to be integrated. Vocabulary changes, article addition, and
searches are all to be handled by the one program. The previous separate programs
performed single functions – article addition, or search. The new program does not
have a single function that can serve as a starting point for design. Instead, it gets built
from objects – a "user interaction" object, a "vocabulary" object, and an "info store"
object.

22.1 REFCARDS

Scholars doing research used to keep their records on "reference cards". Although
computer data bases and file systems are now common, some people still use the old
cards and many of the simpler computer systems use "cards" as a metaphor in their
design. Reference cards would contain a number of data fields including: authors, title
of paper, journal name, issue number, page number, year of publication, keywords, and
possibly an abstract. Computer based versions have the advantage that you can easily
search a collection of such "cards" checking each to identify those that contain a
particular keyword, or a specified author.

Specification

The RefCard program will work with collections of "reference card" records. There is
no specified maximum for the number of records in a collection, but the implementation
can assume that the largest collections will have at most a few hundred records. A
"reference card" record is to have text data fields for the author, title, journal, keyword,
and abstract; it is also to have integer fields for issue number, year, first page, and last
page. The text data fields should each hold 250 characters.

The "RefCard" program is to:

• allow a user to create a collection of "reference card" records.

• save a collection to a disk file and then reload a collection in subsequent runs of the
program.

• let the user add a record to a collection, view an existing record, change a field in
an existing record, or remove a record from the collection.

• let the user search for the first record with a particular word (name) in the "author",
"title", "keyword", or "abstract" field; after displaying the first matched record the
program is to allow searches for subsequent matching records. In addition to

RefCards example 727

searches on specified individual fields, the search system should also allow for a
search for a word in any of these fields.

• let the user display the contents of the "title", "keyword", "author", or "abstract"
fields from all cards in the collection.

The program should be interactive, prompting the user for a command and for other
data as needed. The command entry system should allow the user to view the range of
commands appropriate in a given context.

22.1.1 Design

Preliminary design: Objects and their classes:

So, where do you start?
You start by saying "What objects are present in the running program?"
Some objects are obvious. The program will have "RefCard" objects. These will

own text strings (character arrays) in which data like author names, keywords, title and
so forth are stored. They will also probably own some integer data like "year of
publication". What do they do? They display their data, they can store their data to
disk files, they can read data from disk files. They've got to get filled with data
somehow; so it would seem reasonable if a "RefCard" could interact with a user
allowing data to be entered or changed.

The program is to work with at most a few hundred of these "RefCard" objects.
They aren't that large (a little less than 1300 bytes), and since there will be only a few
hundred at most, it is reasonable to keep them all in memory while the program is
running (more than 750 records fit into a megabyte and that isn't much for most current
PCs). Keeping all records in memory will make searches much faster. So, there will
have to be something that holds the collection in memory. There is no "unique search
key" that could be used for something like a binary tree. Instead we will need
something like a "list" or "dynamic array". A dynamic array seems more appropriate.
Removal operations are going to be rare; lists are better than dynamic arrays only in
cases where removals are frequent. The dynamic array can be an instance of an "off the
shelf" class from a class library.

Although a dynamic array can be used to hold the actual collection, there had better
be something a little more elaborate. We need operations that involve the collection as
a whole – like the searches (as well as operations like saving the collection to a disk
file). The search system needs information like the string that is sought, and the current
position in the collection if we are doing operations like "find" and "find again". We
will also need some idea like "current position" if we are to handle requests like "show
card ...", and "remove card ...". A "CardCollection" object could own the actual
dynamic array with the cards and, in addition, other information like search string,
position, and name of the file. A CardCollection object could organize searches and

RefCard objects

A list or dynamic
array

CardCollection object

728 A World of Interacting Objects

similar operations like viewing a particular field from all records. What exactly does a
CardCollection own and do? Don't know. Its role will become clearer as we iterate
through the design process.

Although the CardCollection object could handle some of the interactions with the
user (like getting information needed for a search), it will be useful to have more
general interactions handled by a "UserInteraction" object. Actually, this is probably
not strictly necessary for this program. However, as we move to more elaborate
programs (particularly those built on top of framework class libraries as discussed in
Part V) we will see "standard" arrangements of classes. It will be "standard" to have
some "UserInteraction" object that controls the overall program flow. This User-
Interaction object will create the CardCollection object, get the top level
commands from the user ("add a card", "show a card", "change a card", "do a search",
…), sort out files and do similar tasks. In this program, the UserInteraction object
will only have one CardCollection; but if a UserInteraction object could use more
than one window for input and output it could have a separate CardCollection
associated with each separate window (that is how word processors and other programs
typically work).

If the CardCollection object is organizing everything, what is there left for the
"main program"? Not much. A main program for one of these object based systems is
usually simple: create the principal object, do any other initializations, tell principal
object to "run", when "run" finishes do any tidying up that may be needed. In fact, we
can write the main program already:

int main()
{

UserInteraction UI;
UI.Initialize();
UI.Run();
UI.Terminate();
return 0;

}

We aren't yet into "class hierarchies" (see next chapter). When we get class
hierarchies we will have to do a bit more work characterizing classes and finding
relationships between classes. For now, things are simple. The various types of object
identified so far correspond directly to the classes that we will need. They are
summarized in Figure 22.1. Most are shown as "fuzzy blobs". The fuzzy blobs
represent "analysis" level classes. We have a rough idea as to what they own and what
they do, but we can't yet define any hard boundaries.

UserInteraction
object

main()?

Classes and objects

RefCards example: Design 729

RefCard

Owns:
 strings for
 name, title, etc
 integers for
 year etc.
Does:
 File read, write
 Show content
 Change content
 Check fields

CardCollection

Owns:
 details of file
 number of cards
 a dynamic array
 data for search request
Does:
 Add a card,
 Find a card,
 organize transfer
 of all cards to
 file,
 ?

UserInteraction

Owns:
 a CardCollection
Does:
 Run,
 GetCommand
 ?

Dynamic
Array

Length()
Append()
Remove()
Nth()

numitems,
pointer to
 array, …

Grow()

Figure 22.1 First idea for classes for RefCards example.

Class DynamicArray is an exception. It is shown as a design level class diagram
with a firm boundary, exact specification of its interface and private data. After all, its
from a class library and has already been designed and implemented. Our next task will
be to firm up those fuzzy blobs so that they too can be defined with firm boundaries.

Design 2: Characterize interactions among objects

The next stage of the design process is typically iterative. Our aim in this stage is to
clarify what instances of these classes own and exactly what they do. We aren't yet

730 A World of Interacting Objects

interested in exactly how they do their tasks, just trying to identify how the overall work
of the program gets split up into tasks that each different object must perform.

The best approach to assigning responsibilities is to try out "scenarios" that illustrate
how some of the program's major tasks can be accomplished. A simple scenario for this
program would be "the things that happen when its time to terminate"; it will be simple
because the only important thing that will happen is that the CardCollection must
save all the cards back to a disk file. A more complex scenario would be "the things
that happen when we search for cards with the word 'Stroustrup' in their 'author' fields".
This scenario would be more complex because it probably involves more types of
object and more elaborate processing tasks.

While working through these scenarios you guess. You guess things like "object-1
will ask object -2 to perform task A". Then, you examine the implications. If object-2
is to perform task A then it had better own (or at least have access to) all the data
needed to carry out this task. If this scenario has object-2 owning some data, then those
data had better not appear as belonging to a different object in some other scenario. If
object-2 doesn't own the data but has "access to them", then you had better sort out how
object-2 got that access. Presumably some other object gave object-2 a pointer to the
data, but which other object and when? You guess again noting down an extra
responsibility for another object (and, hence, a function for its class).

Naturally, some of your guesses are wrong. You run through a few scenarios.
Discover that in different scenarios you've allocated ownership of some specific data to
different objects. You have to decide which class of object really should own the data
and go back and change the scenario that is incorrect.

Of course, this is still a fairly simple program so the scenario analysis and other
mechanisms for "fleshing out" the roles of the classes will be completed rather easily.

Example scenario: initialization

Assumptions: 1) the main program has already created a UserInteraction object, 2)
the constructor for the UserInteraction object created a CardCollection object, 3)
this CardCollection object is "empty", it will have a dynamic array with some default
number of slots, and it will have initialized things like its count of cards to zero.

Initialization task: get the user to enter a filename, if the file exists read data on existing
cards, otherwise create an empty file where a new collection of cards can be saved.

Possible interactions:

1. UserInteraction object gets user to enter a filename. It could open the file, but
handling the file might be better left to the CardCollection object. So ...

2. UserInteraction object asks CardCollection object to open the file, passing the
name of the file as an argument in the request.

Scenarios

RefCards example: Design 731

3. The CardCollection object should first try to find an existing file (an "open"
operation with "no-create" specified).

If this works then existing data should be loaded (see next step).

If that operation failed, the CardCollection object should try to create a new file.

If it can open a new file, the CardCollection object should report success (it
should also make certain that all its data fields are initialized properly, though
possibly this should already have been done in its constructor).

4. If the CardCollection object was able to open an old file, it has to load the
existing cards into memory.

It is going to have to have a loop in which it creates RefCard objects, gets them
filled with data from the file, and then adds them to its DynamicArray (lets call that
fStore).

It will be easiest if the first data item in the file is an integer specifying how many
cards there are. The CardCollection object can read this integer into its card
count (fNumCards) and then have a loop like the following:

for(int i = 1; i<= fNumCards; i++) {
RefCard *r= new RefCard;
r -> ReadFrom(input file);
fStore.Append(r);
}

The CardCollection object doesn't know what data is in a RefCard so it can't read
the data. A RefCard does know what data it wants. So, as shown, the
CardCollection object asks each newly created RefCard to read itself.

When this process finishes, we will have a set of RefCards that have each been
created in the heap. Their addresses will be held in the DynamicArray fStore.
Because it owns fStore, the CardCollection object can get at the individual
RefCards whenever it needs them.

There should be some checks for successful file transfers. If everything ran OK,
then the Load function should return a success indicator to the Open function which
can the report success to the UserInteraction object.

5. The UserInteraction object should check the success/failure indicator returned
by the CardCollection object; if the file couldn't be opened the
UserInteraction object should either terminate the program or loop to allow the
user to guess another file name.

732 A World of Interacting Objects

6. Finally, the UserInteraction object should tell the CardCollection object to
print a status report so that the user knows how many cards are in the collection.

It is usually helpful to represent such interactions through a diagram, like that shown
in Figure 22.2. The diagram shows things that happen at different times; the time
increases as you go down the diagram. The entries shown across the diagram illustrate
what different objects are doing.

UserInteraction
object

CardCollection
object

DynamicArray
object

RefCard
objects!

Open(filename)

success/
failure reply

ReportStatus()

Append(…)

+
Constructor

Load()

ReadFrom()

loop in
Load()

Figure 22.2 Object interactions when loading from file (activities resulting from
execution of UserInteraction::Initialize() for an UI object).

Back in Chapter 15 where design techniques for top down functional decomposition
were reviewed, diagrams were rated as less useful than text descriptions and pseudo
code. It was suggested that diagrams like those charting possible function calls weren't
that informative. These class interaction diagrams do provide a much clearer indication
of the dynamics of a program. They can capture what is going on in each significant
subtask that must be performed.

A diagram like that shown in 22.2 doesn't try to represent everything; for example,
there is nothing about the file not opening and having to be created. The focus is on the
more important interactions between objects. The classes of the objects involved are
indicated by the class labels across the top. Single vertical lines show where an object
is in existence. The UserInteraction (UI), CardCollection, and DynamicArray
object all exist before the start of the diagrammed scenario and continue to exist after its

Diagramming the
object interactions of

a scenario

Meanings of symbols
in diagram

RefCards example: Design 733

finish. The RefCard objects only get created part way through the scenario, so their
vertical lines start half way down.

The outline rectangles indicate where an object is active, i.e. executing a function or
its own function has invoked a global function or action by some other object. In the
example, all activity is part of UserInteraction::Initialize() (the long rectangle
for the UserInteraction object). Arrows indicate function calls (and sometimes are
used to provide information on results returned). The line with the '+' tag indicates a
place where a new object is to be created.

Thus, the diagram shows the process of a call from the Initialize() function of a
UI object to the Open() function of a CardCollection object. This Open() function
calls Load() (executed by the same CardCollection object). Function
CardCollection::Load() has a loop. In this loop, a RefCard object gets created (the
'+' line), then gets asked to execute its ReadFrom() function. Then the DynamicArray
object gets asked to do an Append() operation.

Results:

The process of analysing and diagramming this scenario has added new functions to the
responsibilities proposed for class CardCollection. It is going to have to have
functions like:

int CardCollection::Open(char*) open file with given name
void CardCollection::Load() create RefCards, get

them filled in with data
from file

void CardCollection::ReportStatus() state what was read

The CardCollection object should probably be responsible for recording the name of
its file (this name will be needed in some of the output shown to the user, like that from
ReportStatus()). It had also better have an fstream data member so that it can
actually keep hold of the file from the time its told to Open() till the time its told to
Close() and save the data. So, we have also got a couple of extra data members:

CardCollection {
public:

…
private:

int fNumCards;
char *fFileName;
fstream fFile;
DynamicArray fStore;
…

};

Equivalence between
diagram and earlier
text description

New responsibilities
identified from
scenario

734 A World of Interacting Objects

Example scenario: termination

Assumptions: The CardCollection object has an open fstream to which it can write
its cards.

Termination: The termination stage of the program requires that all RefCards get saved
to file and then they should probably be deleted (not absolutely necessary here as the
program is about to finish, but it would matter if the program was supposed to allow the
user to continue by opening another card collection).

Possible Interactions:

Figure 22.3 diagrams an idea as to the interactions. The UserInteraction object will
ask the CardCollection object to Close(). The CardCollection object would start
by calling its own Save() function. This would start by setting the file so that any
existing data gets overwritten, then it would write out the number of cards, after this
there would be a loop in which each RefCard object in the DynamicArray gets told to
save its own data. The code would be something like:

fFile.seekp(0);
fFile << fNumCards << endl;
for(int i=1; i <= fNumCards; i++) {

RefCard *r = (RefCard*) fStore.Nth(i);
r->WriteTo(fFile);
}

Once the cards had been saved, the file should be closed and then there could be a
second loop in which they get removed from the DynamicArray and are then deleted.
This would be done in the CardCollection::Close() function:

…
fFile.close();
for(int i = fNumCards; i > 0; i--) {

RefCard *r = (RefCard*) fStore.Remove(i);
delete r;
}

When the function CardCollection::Close() was completed, control would
return to UserInteraction::Terminate(). There would then be an opportunity to
delete the CardCollection object.

Results:

This analysis identifies just one extra function. Class CardCollection will have to
define a Save() routine; like Load() this will be a private member function.

Interactions on
termination

New responsibilities
identified

RefCards example: Design 735

UserInteraction
object

CardCollection
object

DynamicArray
object

RefCard
objects!

Close()

Nth()
Save()

WriteTo()

loop in
Save()

loop in
Close()

Remove()

delete

delete

Figure 22.3 Object interactions resulting from UserInteraction::Terminate().

Example: Interaction between the User and the UserInteraction object

The code for handling interactions between the human user and the UI object will itself
be simple. This code will form the body of the function UserInteraction::Run().
Basically, all we need is a loop that gets a command from the user (a single letter will
do), the command will (usually) be easy to convert into a request that the
CardCollection perform some action like showing an existing card, or adding a new
card.

A user command like "add a card" can be passed directly to the CardCollection
object. A command like "change contents of a card" or "delete a card" will require
additional input to identify the card. (Cards may as well be identified by their sequence
number in the collection; these sequence numbers can appear in listing so that the user
knows which card is which.) We will need a few simple auxiliary routines to get extra
input data.

UserInteraction::Run() will be something along the following lines:

void UserInteraction::Run()
{

int done = 0;
cout << "Enter commands, ? for help" << endl;
for(; !done;) {

Simple command
loop

736 A World of Interacting Objects

char command = GetCommand();
switch(command) {

case 'q' : done = 1; break;
case '?' : Help(); break;
case 'a' : fCollection->AddCard(); break;
case 'c' : DoChange(); break;
case 'd' : DoDelete(); break;
…
…
case 'v' : fCollection->DoView(); break;
default :

cout << "Command " << command <<
" not recognized" << endl;

}
}

}

It implies the existence of a largish number of very simple auxiliary routines. These
will all become additional private member functions of class UserInteraction. A
function like GetCommand() will just read a character, convert it to lower case, and
return it.

Functions like DoChange() and DoDelete() both need the user to input a card
number. Obviously the number entered has to be validated; it will have to be in the
range 1 to n where n is the number of cards owned by the collection. (Note, the
UserInteraction object has to be able to ask the CardCollection object how many
cards it has.) Since this number input routine is needed by several routines, it might as
well become another private member function. Once these "DoX()" functions have got
any necessary additional input, they will call matching functions of the
CardCollection object.

Elaboration of these simple member functions can be handled by using much the
same sort of top down functional decomposition techniques as presented in Part III.
Here the "top" is a single (moderately complex) member function of a specific class.

Results:

Class CardCollection must report the number of cards it has, so we need:

int CardCollection::NumCards()

as an extra public member function. Class CardCollection will also need AddCard(),
DoView(), ShowCard(int cardnum) and similar functions. Some additional scenarios
will be needed to clarify the prototypes (argument lists) for these functions.

A largish number of simple private member functions have been identified for class
UserInteraction. We are going to need:

char UserInteraction::GetCommand(); get character

Auxiliary private
member functions

New responsibilities
identified

RefCards example: Design 737

int UserInteraction::PickACard(); get valid card number
void UserInteraction::Help(); list valid commands
void UserInteraction::DoDelete(); organize delete
void UserInteraction::DoChange(); organize change
void UserInteraction::DoShow(); organize show

Example scenario: add a card

Adding a card: The collection will have to create a new RefCard, get the RefCard to
interact with the user to obtain the information that it needs for its data members, and
then it will have to add the card to the dynamic array. An interaction diagram is shown
in Figure 22.4.

UserInteraction
object

CardCollection
object

DynamicArray
object

RefCard
object

AddCard()

constructor

GetData()

Append()

+

Figure 22.4 Object interactions resulting from a User's "add card" command.

Most of the work can be left to the newly created RefCard object. This can prompt
the user to enter data for each of the data members (title, authors, year of publication
etc.).

Results:

Need functions:

void CardCollection::AddCard();

and

void RefCard::GetData();

738 A World of Interacting Objects

Example scenario: getting a card shown or changing an existing card

These two operations are going to involve very similar interactions among the
participating objects. The pattern is illustrated in Figure 22.5.

The UserInteraction object will execute a routine (PickACard()) that prompts the
user for the card number. This will involve an interaction with the CardCollection
object to make sure that the number entered is in range.

If a valid card number is entered, the UserInteraction object will ask the
CardCollection object to ChangeCard() or ShowCard().

UserInteraction
object

CardCollection
object

DynamicArray
object

RefCard
object

ChangeCard(…)
or
ShowCard(…)

Show()
or

Change()

Nth()

NumCards()

PickACard()

Figure 22.5 Object interactions resulting from a User's "show card" or "change
card" commands.

The CardCollection object will use the Nth() member function of its
DynamicArray to get a pointer to the chosen RefCard. The "show" or "change"
command will then be forwarded to the RefCard object. A RefCard will handle "show"
by displaying the contents of all data members. A "change" command will involve
prompting the user to identify the data member to be changed (single character input),
display of current contents of that data member, and acceptance of new input value.

Example scenario: deleting a card

The interactions for a delete command are summarized in Figure 22.6

RefCards example: Design 739

UserInteraction
object

CardCollection
object

DynamicArray
object

RefCard
object

DeleteCard(…)

delete

Remove()

NumCards()

PickACard()

Figure 22.6 Object interactions resulting from a User's "delete card" command.

Example scenario: viewing a field from every card

View: The user is prompted to identify which field is to be viewed (choice restricted to
'author', 'title', 'keywords', or 'abstract'). The contents of the chosen field should then be
displayed (along with a card identifier number) for each card in the collection.

Possible Interactions:

Figure 22.7 diagrams an idea as to the interactions. The UserInteraction object can
simply pass a "view" request to the CardCollection object.

The CardCollection object will first have to get the user to identify the field that is
to be displayed. This will involve the use of another auxiliary private member function,
GetField(). This function will prompt the user to chose among the allowed fields
(again, a single letter code should suffice for input). The function should return an
integer identifier.

These "field identifiers" are shared with the RefCard objects. It would probably be
best if they were defined in the RefCard.h header file.

After the code to get a field identifier, the DoView() function will need a loop in
which it accesses each RefCard from its collection and tells it to print the contents of
the chosen field. The code will be along the following lines:

for(int i = 1; i <= fNumCards; i++) {
cout << i << "\t";
RefCard *r = (RefCard*) fStore.Nth(i);
r->PrintField(field);
cout << endl;
}

Loop processing each
card in the collection

740 A World of Interacting Objects

UserInteraction
object

CardCollection
object

DynamicArray
object

RefCard
objects!

DoView()

Nth()

GetField()

PrintField()

loop in
DoView()

Figure 22.7 Object interactions resulting from a User's "view" command.

Results from scenario:

New functions: CardCollection::DoView(), CardCollection::GetField(), and
RefCard::PrintField().

Example: Searching for cards with a given word

The actual interactions among objects when doing a simple search would be somewhat
similar to those shown for "view".

Once again, the CardCollection object would need to get the user to identify the
field (data member) of interest; though there is a change here in that system is supposed
to allow a search on "any" of the four fields in addition to searches on individual fields.
(Probably, function GetField() should be extended so that it has a parameter that
indicates whether "any" is an acceptable input. This parameter would be "false" if
GetField() were being called to find a field for "view" but "true" in the case of a
search.)

After identifying the field of interest, the CardCollection object would have to get
the user to enter the string (the name or word that is to be found in the search). It could
then have a loop asking each RefCard in turn to "check a field" (rather than print a field
as in "view').

Simple form of
search

RefCards example: Design 741

Checking a field for a
string

Coding the search for a word in a character array like a title is not a problem. There
is a function in the string library that does exactly this (function strstr()).

The main problem is that a simple search would list all the cards that matched. The
specification required something like the "Find…" and "Find Again…" commands that
you get with most word processors.

We will have to have two functions:

CardCollection::DoFind()
CardCollection::DoFindAgain()

The DoFind() function will do the more elaborate work. It will prompt the user to
identify the field and the string, and organize a search for the first card that matches. It
will have to arrange for the CardCollection object to store state information defining
the field, string, and position in the collection where the first matching card was found.

The DoFindAgain() function should check that there is a search in progress (string
defined, position reached last time set etc). If that is OK, it should have a loop that
works through successive cards until another match is reached. It should then update
the state data so that another later call will continue the search.

This implies that we need some additional data members in class CardCollection:

char *fFindString;
int fFindPos;
int fSearchField;

These are going to have to be set appropriately in the constructor.

Finalising the design

The design process using scenarios (and supplementary top-down functional
decomposition when you get a complex member function) have to continue until you
fully can characterize your classes. You need to get to the point where you can write
down a complete class declaration and provide short (one sentence) descriptions of each
of the member functions.

For this example, we eventually get to the following:

class RefCard {
public:

RefCard();
/*
Disk i/o
*/
void ReadFrom(fstream& s);
void WriteTo(fstream& s) const;
/*
Communication with user

More complex search
required by
specification

DoFind()

DoFindAgain()

Class RefCard
declaration

742 A World of Interacting Objects

*/
void Show() const;
void GetData();
void Change();
int CheckField(int fieldnum, char *content);
void PrintField(int fieldnum);

private:
char fAuthors[kNAMEFIELDSIZE];
char fTitle[kNAMEFIELDSIZE];
char fJournal[kNAMEFIELDSIZE];
char fKeywords[kNAMEFIELDSIZE];
char fAbstract[kNAMEFIELDSIZE];
short fFirstPage;
short fLastPage;
short fIssue;
short fYear;

};

As required by the specification, the character arrays used to store titles are fixed sized.

Constructor
Initialize all character arrays to blank string, all integers to zero.

ReadFrom, WriteTo
Read data from (write data to) a text file.

Show
Print identifying field labels and contents of all data members.

GetData
Prompt user and then read values for each data member in turn.

Change
Get user to identify data member to be changed (enter a letter),

output details of current contents of that data member, read replacement
data.

CheckField
Integer argument identifies data member to be checked, string

argument is content to be searched for using strstr() function from
string library.

PrintField
Integer argument identifies data member that is to be output.

Class RefCard,
function

specifications

RefCards example: Design 743

Class CardCollection
declaration

class CardCollection {
public:

CardCollection();
/*
Attaching to file
*/
int Open(const char filename[]);
void Close();
/*
Main commands
*/
int NumCards() const;
void ReportStatus() const;
void AddCard();
void DeleteCard(int cardnum);
void ShowCard(int cardnum) const;
void ChangeCard(int cardnum);
void DoFind();
void DoFindAgain();
void DoView();

private:
int GetField(int anyallowed);
void Load();
void Save();
int fNumCards;
char *fFileName;
fstream fFile;
DynamicArray fStore;
char *fFindString;
int fFindPos;
int fSearchField;

};

Constructor
Initialize data fields, fNumCards is zero, fFindString is NULL etc.

Open
Either open existing file and call Load(), or create a new file. If

can't do either report error.

Close
Call Save() to get cards to file, then clean up deleting cards.

NumCards
Report number of cards in current collection.

ReportStatus
Print out name of file, and details of number of cards.

Class CardCollection
function
specifications

744 A World of Interacting Objects

AddCard
Create a card, get it to obtain its data from the user, add to

collection, update count of cards owned..

DeleteCard
Remove identified card from collection then delete it, update count

of cards owned.

ShowCard
Get pointer to chosen card from dynamic array, tell card to show

itself.

ChangeCard
Get pointer to chosen card from dynamic array, tell card to interact

with user to get changes.

DoFind
Use GetField() (specifying any as OK) to allow user to pick

field, then prompt for string, then loop through cards asking them to
check the specified field-string combination. Stop as soon as get a match,
asking the card to show itself and recording, in state data, the point where
match was found. If no matches, warn user and discard the search
information

DoFindAgain
Check that there is a search in progress. If not, warn user. If there

is a search, continue from current point in collection checking cards until
either find a match or there are no more cards.

GetField
Use simple "menu" selection system to let user pick a field.

Load
Read number of cards in file, then loop creating cards, letting them

read their data from file, and adding them to collection.

Save
Write number of cards to file, then let each card write itself to file.

class UserInteraction {
public:

UserInteraction();

Class UserInteraction
declaration

RefCards example: Design 745

void Initialize();
void Run();
void Terminate();

private:
char GetCommand();
int PickACard();
void Help();
void DoDelete();
void DoChange();
void DoShow();

CardCollection *fCollection;
};

Constructor
Create a CardCollection object

Initialize
Ask the user to enter a filename, tell the CardCollection object

to try to open that file.

Run
Loop getting and processing user commands until a "quit"

command is entered.

Terminate
Tell the CardCollection object to close up, then get rid of it.

GetCommand
Get single character command from user.

PickACard
Prompt user for a card number, make certain that it is in range (ask

CardCollection object how many cards there are to chose from).

Help
Print explanation of available commands.

DoDelete, DoShow, DoChange
Use PickACard() to get the card number then call the

corresponding member function of the CardCollection object.

As well as developing the class declarations and function summaries, you might want to
produce "design diagrams" for the classes like that shown in Figure 19.1.

Class UserInteraction
function
specifications

746 A World of Interacting Objects

File (module) structure of program

Another design choice you now have to make is how these components will be
organized in files. Here it would be appropriate to have the files:

CC.h, CC.cp CardCollection class
D.h, D.cp the dynamic array
main.cp the little main() driver routine
RefCard.h, RefCard.cp RefCard class
UI.h, UI.cp UserInteraction class

Because the objects of these classes interact so much, there are lots of inter-
dependencies in the code. For example, when compiling the code in UserInteraction.cp,
the compiler has to be able to check that all those requests to the CardCollection
object are valid. This means that it will have to have read the CardCollection.h file
before it compiles UserInteraction.cp.

It is often useful to draw up a diagram showing the interrelationships between files
so that you remember to #include the necessary headers. Figure 22.8 illustrates some of
the relations for this program.

main.cp

main.o

D.cp

D.o

D.h

UI.cp

UI.o

UI.h

CC.cp

CC.o

CC.h

RefCard.cp

RefCard.o

RefCard.cp

Figure 22.8 Illustration of direct file dependencies in the RefCard program.

"Header
dependencies"

Direct (uses)
dependencies

RefCards example: Design 747

The code in CardCollection.cp uses RefCard functions and DynamicArray functions
so it must #include both these header files. Class UserInteraction needs the
declaration of class CardCollection so it must include CC.h; similarly main needs
#include UI.h.

There are further dependencies. Although UserInteraction doesn't make any
direct use of a DynamicArray it does need to know about this class. Similarly, the main
program needs to know about the existence of class CardCollection. These
dependencies result from the presence of data members in classes.

Class CardCollection has a DynamicArray as a data member. When the compiler
is trying to process the code in UI.cp it will need to work out the size of a
CardCollection object and so will need to have already read the file D.h.

When processing main.cp, the compiler would need to be reassured that the
CardCollection* pointer data member in class UserInteraction was referring to a
defined type of structure. It wouldn't need to read the complete declaration of class but
would need to have the class declared (i.e. the UI.h file would need to include a
declaration like "class CardCollection;" as well as the full declaration of class
UserInteraction).

You have to sort out all the additional indirect dependencies so that you can #include
all required files. If you forget some, you will get numerous compiler error messages.
The actual messages may be obscure – complaints like "Illegal cast from int to void*",
or "Undefined function" for a function that you know is defined. Compilers can get
quite confused when they encounter references to classes that they haven't seen
declared. If you get such odd compiler errors, start by checking that you included the
right header files and in the correct order (as CardCollection uses DynamicArray, the
#include "D.h" should come before the #include "CC.h" to make certain that class
DynamicArray has been declared before an instance of the class gets used).

Additional (indirect)
dependencies

Compiler error
messages relating to
missing headers are
often obscure

22.1.2 Implementation

As always, if the design is complete then the implementation is trivial.. The main
program has already been given.

The header file UI.h would contain the class UserInteraction declaration shown
earlier. The presence of the CardCollection* data member means that the header file
would have to contain a declaration the existence of class CardCollection. The
implementation file, UI.cp, would need to #include stdlib, ctype, UI, and CC.

The constructor simply creates the CardCollection. The Initialize() member
function will get a filename from the user and ask the CardCollection to open the file;
if this fails the program terminates (this call to exit() lead to the need to #include
stdlib.h). Function Terminate() gets the CardCollection to close up before it is
deleted.

UserInteraction::UserInteraction()

UserInteraction

constructor

748 A World of Interacting Objects

{
fCollection = new CardCollection;

}

void UserInteraction::Initialize()
{

char buff[100];
cout << "Enter name of file with cards : ";
cin >> buff;
int status = fCollection->Open(buff);
if(status < 0) {

cout << "Sorry, can't open (or create) file."
"Giving up" << endl;

exit(1);
}

fCollection->ReportStatus();
}

void UserInteraction::Terminate()
{

fCollection->Close();
delete fCollection;

}

The highlighted statements are typical of the "hey object, do action" calls that pervade
the code.

The complete version of the Run() member function is:

void UserInteraction::Run()
{

int done = 0;
cout << "Enter commands, ? for help" << endl;
for(; !done;) {

char command = GetCommand();
switch(command) {

case 'q' : done = 1; break;
case '?' : Help(); break;
case 'a' : fCollection->AddCard(); break;
case 'c' : DoChange(); break;
case 'd' : DoDelete(); break;
case 's' : DoShow(); break;
case 'f' : fCollection->DoFind(); break;
case 'g' : fCollection->DoFindAgain(); break;
case 'v' : fCollection->DoView(); break;
default :

cout << "Command " << command <<
" not recognized" << endl;

}
}

}

Initialization, getting
filename

Interaction loop for
user commands

RefCards example: Implementation 749

Menu based programs like this should try to include a help function that explains
their options:

void UserInteraction::Help()
{

cout << "Commands are : " << endl;
cout << "\ta Add a new card." << endl;
…
…
cout << "\tv View one field from all cards" << endl;
cout << "\tq Quit" << endl;

}

Functions DoDelete(), DoChange(), and DoShow() are very similar; DoDelete()
can represent them all:

void UserInteraction::DoDelete()
{

int which = PickACard();
if(which < 1)

return;
fCollection->DeleteCard(which);

}

They all use the auxiliary function PickACard() to get a valid card number:

int UserInteraction::PickACard()
{

if(fCollection->NumCards() < 1) {
cout << "There aren't any cards so you can't do"

"that now." << endl;
return 0;
}

cout << "Which card? (Enter number in range 1 to " <<
fCollection->NumCards() << ") : " << endl;

int aNum;
cin >> aNum;
if(!cin.good()) {

cout << "??";
cin.clear();
cin.ignore(100, '\n');
return 0;
}

if((aNum < 1) || (aNum > fCollection->NumCards())) {
cout << "Invalid input, ignored." << endl;
return 0;
}

return aNum;
}

Built in help

DoDelete() and
similar functions

Auxiliary input
functions

750 A World of Interacting Objects

The other auxiliary input function, GetCommand(), is used by Run() to get a single
input character. The call to ignore() removes ("flushes") any other input remaining
in the stream (this avoids problems when a user does something like type a command
name, e.g. 'view,' instead of just a command letter 'v').

char UserInteraction::GetCommand()
{

char ch;
cin >> ch;
ch = tolower(ch);
cin.ignore(100, '\n');
return ch;

}

As usual, constructor for class CardCollection should initialize its data members.
It is not absolutely necessary to initialize all members. For example, we know that
there is no possibility that the fFileName field would be used before being set, so it is
acceptable to leave this uninitialized. On the whole, you should be cautious and
initialize everything!

CardCollection::CardCollection()
{

fFindString = NULL;
fFindPos = -1;
fNumCards = 0;

}

Function Open() really consists of two parts. The first deals with the case of an
existing file; this uses the auxiliary Load() function to get the data. The second part
deals with the case where it is necessary to create a new file. Function Close() needs
a call to Save(), the actual file closing action, and some tidying up operations. (The
tidying up isn't comprehensive; we don't get rid of the array of pointers owned by the
DynamicArray. The next chapter covers "destructor" – special automatically invoked
tidy up routines. Class DynamicArray really needs a "destructor" function to tidy away
its pointer array.)

The initialization step of class UserInteraction also involves a call to a
CardCollection::ReportStatus() function. This function is not shown. It would
simply print out the name of the file associated with the CardCollection and the
number of cards that it contained.

int CardCollection::Open(const char filename[])
{

/* Keep copy of file name */
fFileName = new char[strlen(filename)+1];
strcpy(fFileName, filename);

class CardCollection

constructor

Opening and closing
the associated file

RefCards example: Implementation 751

fFile.open(fFileName, ios::in | ios::out | ios::nocreate);
if(fFile.good()) {

Load();
return 0;
}

fFile.open(fFileName, ios::in | ios::out);
if(!fFile.good())

return -1;
return 0;

}

void CardCollection::Close()
{

Save();
fFile.close();
// Should get rid of data structures like the cards
for(int i = fNumCards; i > 0; i--) {

RefCard *r = (RefCard*) fStore.Remove(i);
delete r;
}

if(fFindString != NULL) delete [] fFindString;
}

The Load() function reads the number of cards then loops creating cards and
getting them to read their data. Each card gets "appended" to the dynamic array. You
would need some error checking on input operations even if, as here, it is limited to
stopping the program if something seems to have gone wrong.

The Save() function is not shown. It just writes details of the size of the collection,
then gets each member card to write itself to the file.

void CardCollection::Load()
{

fFile.seekg(0);
fFile >> fNumCards;
fFile.ignore(100,'\n');
for(int i=0; i < fNumCards; i++) {

RefCard *r = new RefCard;
r->ReadFrom(fFile);
if(!fFile.good()) {

cout << "Sorry, file must be corrupt, "
"giving up." << endl;

exit(1);
}

fStore.Append(r);
}

}

Reading the cards

752 A World of Interacting Objects

AddCard() The function AddCard() is a simple implementation of the ideas shown in the
interaction diagram shown in Figure 22.4:

void CardCollection::AddCard()
{

RefCard *r = new RefCard();
r->GetData();
fStore.Append(r);
fNumCards++;

}

The delete operation involves removing a chosen card from the DynamicArray
fStore, deletion of the object, and updating of the member count. (Strictly, the
member count is redundant as we could always ask the DynamicArray for the number
of items that it holds).

void CardCollection::DeleteCard(int cardnum)
{

RefCard *r = (RefCard*) fStore.Remove(cardnum);
delete r;
fNumCards--;

}

The ShowCard() and ChangeCard() functions are similar. A pointer to the chosen
card is obtained from the DynamicArray. Then the card is told to perform an action.
Function ShowCard() illustrates both:

void CardCollection::ShowCard(int cardnum) const
{

RefCard *r = (RefCard*) fStore.Nth(cardnum);
r->Show();

}

Function GetField() has to prompt the user for an indication of the search field
(taking into account whether "any" is an allowed response). It can return a -1 value for
an illegal input of a positive integer constant identifying a valid field. The constants
like kAUTHORFIELD will have to be defined in RefCard.h.

int CardCollection::GetField(int anyallowed)
{

cout << "Which data field?" << endl;
cout << "a Authors, t Title, c Content (abstract), "

"k Keywords" << endl;
if(anyallowed)cout << "x for any of these" << endl;
char ch;
int result = -1;
cin >> ch;
switch(ch) {

DeleteCard()

ShowCard(),
ChangeCard()

Identifying a field for
search or display

RefCards example: Implementation 753

case 'x': if(anyallowed) result = kANYFIELD; break;
case 'a': result = kAUTHORFIELD; break;
case 't': result = kTITLEFIELD; break;
case 'c': result = kABSTRACTFIELD; break;
case 'k': result = kKEYWORDFIELD; break;

}
return result;

}

Function DoView() had better check that there are some cards too view. If there
are, it needs to use GetField() to let the user pick a field to be displayed ("any" is not
allowed here). If the user enters a valid field selection, then each card in the collection
gets told to print the contents of that field. (Loops like the for(;;) loop here run from
1 to N because the DynamicArray uses 1 for the first element, a departure from the
normal C convention of zero-based arrays).

void CardCollection::DoView()
{

if(fNumCards < 1) {
cout << "No cards to view!" << endl;
return;
}

int field = GetField(0);
if(field < 0) {

cout << "Invalid field choice, ignored." << endl;
return;
}

for(int i = 1; i <= fNumCards; i++) {
cout << i << "\t";
RefCard *r = (RefCard*) fStore.Nth(i);
r->PrintField(field);
cout << endl;
}

}

Function DoFind() has some similarities to DoView(). It starts by getting the field
selection ("any" is allowed); then prompts for and reads the search string. It makes a
copy of this string, the copy is saved in the CardCollection's state data. This makes
it possible to resume the search if requested.

Once all the search data are entered, the function loops getting and checking
successive cards from the collection. If a match is found, the card is displayed, and the
function returns. The data member fFindPos is used to control the loop and it retains
the position where a match is found.

If there is no match in the entire collection, a warning is displayed and the search
data are tidied away.

void CardCollection::DoFind()

Viewing a collection

Finding a particular
card

754 A World of Interacting Objects

{
fSearchField = GetField(1);
if(fSearchField < 0) {

cout << "Invalid field choice, ignored." << endl;
return;
}

char buff[50];
cin.ignore(100,'\n');
cout << "Enter search string : ";
cin.getline(buff,49, '\n');

if(fFindString != NULL) delete [] fFindString;
fFindString = new char[strlen(buff) + 1];
strcpy(fFindString, buff);

for(fFindPos = 1;fFindPos<=fNumCards; fFindPos++) {
RefCard *r = (RefCard*) fStore.Nth(fFindPos);
int match = r->CheckField(fSearchField, fFindString);
if(match) {

r->Show();
return;
}

}
cout << "No Matches" << endl;
delete [] fFindString;
fFindString = NULL;
fFindPos = -1;

}

The function DoFindAgain() must check that there is a search in progress and that
we haven't already reached the end of the collection. If further search is meaningful,
the function loops looking for the next matching card. As in DoFind(), a match results
in display of a card and return from the routine while failure to get a match results in a
warning.

The code should work even if the user does things like delete cards between
successive find again operations.

void CardCollection::DoFindAgain()
{

if(fFindPos < 0) {
cout << "You've got to do a 'Find' before "

"'Find Again'" << endl;
return;
}

if(fFindPos >= fNumCards) {
cout << "No more matches" << endl;
delete [] fFindString;
fFindString = NULL;
fFindPos = -1;
return;

Identifying the search
field

Getting the search
string

Saving a copy of the
search string

Search loop

Process a successful
match

Report failure and
tidy up

Find again

RefCards example: Implementation 755

}

for(fFindPos++; fFindPos<= fNumCards; fFindPos++) {
RefCard *r = (RefCard*) fStore.Nth(fFindPos);
int match = r->CheckField(fSearchField, fFindString);
if(match) {

r->Show();
return;
}

}
cout << "No more matches" << endl;
delete [] fFindString;
fFindString = NULL;
fFindPos = -1;

}

The constructor should initialize the strings to null and the numeric fields to zero:

RefCard::RefCard()
{

fAuthors[0] = '\0';
fTitle[0] = '\0';
fJournal[0] = '\0';
fKeywords[0] = '\0';
fAbstract[0] = '\0';
fFirstPage = fLastPage = fIssue = fYear = 0;

}

The functions for transfer to and from file are simple. The file used here is a text file
rather than a binary file. It should be possible to read and edit such a file using a word
processor. (You may find that you have to use one of the utility programs on your
system to change the "file type" before you can edit these files. In some IDEs, data files
written by programs are created with non-standard types.)

The final call to ignore() in ReadFrom is there to consume the newline after the
last of the numbers. If you don't consume this newline, the next ReadFrom() operation
will fail as it will encounter the newline character when trying to read the "authors"
string and so get out of phase.

void RefCard::WriteTo(fstream& s) const
{

s << fAuthors << endl;
s << fTitle << endl;
s << fJournal << endl;
s << fKeywords << endl;
s << fAbstract << endl;
s << fFirstPage << " " << fLastPage << endl;
s << fIssue << " " << fYear << endl;

}

class RefCard

File transfer

756 A World of Interacting Objects

void RefCard::ReadFrom(fstream& s)
{

s.getline(fAuthors, kNAMEFIELDSIZE-1,'\n');
s.getline(fTitle, kNAMEFIELDSIZE-1,'\n');
…
s >> fFirstPage >> fLastPage >> fIssue >> fYear;
s.ignore(100,'\n');

}

Function GetData() is similar to ReadFrom() except that it prompts for each data
item before reading:

void RefCard::GetData()
{

cout << "Enter data for paper:" << endl;

cout << "Author(s) : ";
cin.getline(fAuthors, kNAMEFIELDSIZE-1, '\n');
…
…
cout << "Enter page range,\n";
fFirstPage = GetNumber("\tfirst page: ");
fLastPage = GetNumber("\tlast page: ");
fIssue = GetNumber("Issue # : ");
fYear = GetNumber("Year : ");

}

Numeric values are required for the page numbers, year etc. We need code that
prompts for a number, and then checks that it gets a (positive non zero) number. If the
user enters something that is not a number, we have to clear the error condition, remove
all characters from the input buffer and prompt again. Obviously, this code should be
as a subroutine, we don't want the code duplicated for each numeric field. Hence, we
have a GetNumber() routine.

This could be made a member function of RefCard but it doesn't really seem to
belong. Instead it can be a filescope function defined in the RefCard.cp file:

static int GetNumber(char *prompt)
{

int val = 0;
int ok = 0;
while(!ok) {

cout << prompt;
cin >> val;
if(cin.good()) ok = 1;
else {

cout << "??" << endl;
cin.clear();
cin.ignore(100,'\n');

GetData()

Auxiliary, non-
member function

GetNumber

Output prompt and
read value

If bad input, clear
flag and buffer

RefCards example: Implementation 757

}
}

return val;
}

Function Show() just outputs field labels and values:

void RefCard::Show() const
{

cout << "Author(s)\t: " << fAuthors << endl;
cout << "Title\t\t: " << fTitle << endl;
…
cout << "Abstract\t: " << fAbstract << endl;

}

Function Change() has to prompt for a field identifier, then it should display the
contents of the field before reading a new value:

void RefCard::Change()
{

cout << "Changing card:" << endl;
cout << "Select a (Authors), t (Title), j (Journal)" << endl;
cout << "\tk (Keywords), c (Content, abstract)" << endl;
cout << "\ty (Year), v (Volume), p (Page range)" << endl;
char command;
cin >> command;
command = tolower(command);
cin.ignore(100,'\n');
switch(command) {

case 'a':
cout << "Authors currently " << fAuthors << endl;
cout << "Enter correction : ";
cin.getline(fAuthors, kNAMEFIELDSIZE-1, '\n');
break;

…
…

case 'v':
fIssue = GetNumber("Volume");

default:
cout << "??" << endl;
}

}

Function PrintField() simply outputs the contents of a chosen field:

void RefCard::PrintField(int fieldnum)
{

switch(fieldnum) {
case kAUTHORFIELD: cout << fAuthors; break;
case kTITLEFIELD: cout << fTitle; break;

Show()

Change()

PrintField()

758 A World of Interacting Objects

case kKEYWORDFIELD: cout << fKeywords; break;
case kABSTRACTFIELD: cout << fAbstract; break;

}
}

While function CheckField() uses strstr() to check whether a given string is
contained in any of the string data fields:

int RefCard::CheckField(int fieldnum, char *content)
{

if((fieldnum == kANYFIELD) || (fieldnum == kAUTHORFIELD))
return (NULL != strstr(fAuthors, content));

if((fieldnum == kANYFIELD) || (fieldnum == kTITLEFIELD))
return (NULL != strstr(fTitle, content));

…
…
return 0;

}

Function strstr(const char *s1, const char *s2) "looks for a substring within
a string" returning a char* pointer to the first place where substring s2 can be found in
s1 (or NULL if it doesn't occur). If is one of the standard functions in the string library.
You can find more details using your IDE's help system (or the separate
"ThinkReference" program for the Symantec IDE).

CheckField()

22.2 INFOSTORE

Specification

The InfoStore program is to allow a user to maintain collections of news articles. These
articles are to be indexed according to the "concepts" that they contain. Each concept
can be represented by an arbitrary number of keywords. The vocabulary of concepts
and keywords is to be user definable; there can be a fixed maximum on the number of
concepts allowed (at least a few hundred). (The concept-keyword scheme is the same
as in the example in Section 18.3. For example you might have the concept "ape"
matched by any of a set of keywords that includes "ape", "apes", "chimps",
"chimpanzee", "bobo", "gorilla", ….)

The "InfoStore" program is to allow a user to:

• create an initial vocabulary of keywords and concepts;

• add keywords and concepts to an existing vocabulary;

• add the text of news article to the system;

Information Store Example 759

• perform a search for articles with search requirements specified by entry of
required and prohibited keywords.

22.2.1 Initial design outline for InfoStore

Preliminaries

For a program like this, there are a few design decisions that come before the stage
where we start thinking about the objects that might be present.

We have to decide how to store the permanent data in disk files. We now have three
different kinds of data.

There are the actual news articles. These are just blocks of text and, as in the
program in Section 18.3, we can store them all in a single file provided we can separate
them (use null, '\0', characters) and we know where each begins.

Next, there are going to be index entries, one for each article in the main articles file.
As in the example in Section 18.3, these are going to consist of a set of bits (bit value 1
implies presence of a particular concept in an article, value 0 implies absence), and a
"file address" (record of where an article starts in the main file). We will need a second
file to hold these index entries.

Finally, we need to have some form of "vocabulary file". The earlier program used
a fixed "compiled-in" vocabulary; but that is too restrictive. We now need a file that
contains keywords and numbers. The number associated with a keyword will identify
the concept to which it belongs. So, if for example, concept 25 is the system's
representation of "ape", the vocabulary file should contain entries including "ape 25",
"chimpanzee 25", "gorilla 25". (It is assumed that keywords cannot be associated with
multiple concepts; so you can't have concept 25 "ape" and concept 95 "gangster" with
gorilla appearing as both "gorilla 25" and "gorilla 95".) The vocabulary file can be a
simple text file with lines that contain keyword concept number pairs. The program can
build any more elaborate vocabulary structures from this input.

Each "information store" thus needs three files. We can keep them together by
allowing the user to define a "basename" for the files, e.g. "travel" or "science", and
create the files with distinguishing suffixes (e.g. "travel.dat", "travel.ndx", and
"travel.vcb").

If the user extends the vocabulary then any articles already stored will have to be re-
indexed. The program should deal with this automatically.

The program will load all the vocabulary data and build a look-up structure that can
be used to check whether a word corresponds to one of the concepts. The articles and
index entries will be left in the files. When a search is being performed, each index
entry in turn will get loaded into memory; the user's query can be represented by a
Bitmap structure similar to that used an index entry. Articles that match a search
request will just be copied character by character from the data file to the output; they
don't have to be loaded completely into memory. When an article is being added, it gets

Files for permanent
data

Data files

Index files

Vocabulary files

Common "base
name" for files

Affect of changing
the vocabulary

Memory resident data
and disk-based data

760 A World of Interacting Objects

copied character by character from input file to the data file. Again, the complete
article never has to be in memory. While adding an article, the program will build up a
new index entry and store, temporarily, the current word from the article as was done in
the program in Section 18.3

Thus, the only large memory resident structures will be those used for the
vocabulary.

Normally, the user would be expected to start by building up a vocabulary. This
would probably be done in several separate runs of the program with each run adding a
few more keywords. Once a basic vocabulary had been established, articles might start
to be entered. The user would want to identify a text file with an article. The system
should copy the contents of this file to its data file, at the same time building up an
index record that would then get written to the index file. In any particular run of the
program, the user might add a few articles, and make one or two searches.

Finding objects

Once you have resolved preliminaries like how the files might be organized and how
the program would be used, you can start postulating possible objects.

There are a few "obvious" objects. As in the last example, the system will probably
use a "UserInteraction" object that organizes most of the processing. Once again, the
main program will do little more than create this UserInteraction object and tell it to
"run".

The UserInteraction object will accept commands like "expand vocabulary", "add
an article", "do a search". The UserInteraction object might need to get some
additional information but would deal with most requests by passing them on to other
objects in the system.

Another plausible candidate is a "Vocabulary" object. Something has to own the
keywords and concept numbers. This something has to have organized some fast
lookup mechanism (hash table or tree). This something has to get the words in from the
vocabulary file, and back out to the file whenever extra words have been added during a
run of the program. Words have got to be looked up and concept numbers returned.
There certainly seems to be a group of related data, and larger number of operations on
these data, that could be packaged up in an object that is an instance of some
"Vocabulary" class.

Another possible candidate is an "Infostore" object. Once again, "something" has to
own the three files, and the string that represents the basename of the files. This
"something" can organize opening of the files, keeping track of the length of the data
files and the number of entries in the index file. It can forward user requests for
changes to the vocabulary on to the vocabulary object and perform other organization
roles.

There are several other possible objects. Maybe "Words" should be objects. A
Word object could own a string and a concept number. But there don't seem to be many

Program operation

"Obvious objects"

UserInteraction
object

Vocabulary object

InfoStore object

Words?

Information Store Example: Design 761

tasks for a Word to perform. The Vocabulary object might employ Words, but the rest
of the program would almost certainly just be working with character strings. Words
can be left for now. They might reappear later on but they don't seem to have sufficient
of a role to justify consideration during preliminary design.

News articles? No. They certainly don't do anything (other things scramble through
the text of a news article). Although articles may exist as an "objects" in the data file,
they never really exist in memory. Most processing involving articles works on them
one character at a time.

How about an "ArticleFinder" object? You could argue that this "owns data" e.g. it
will own the user's query (this will take the form of a set of required and set of
prohibited concept numbers, both represented as bit maps). It will check this query
against each entry in the index file and print those articles that match.

However, an ArticleFinder object doesn't really have the right feel. Objects are
primarily things that are created dynamically and remain around for a reasonable length
of time (like the RefCards in the last example). If you think how the program would
work, the InfoStore object would create an ArticleFinder each time the user made a
search request. This ArticleFinder would do its stuff. Then it would be destroyed. It
doesn't have the right kind of lifetime. It really is "just a function" and the data that it
"owns" are really just automatic variables that it uses. So discount ArticleFinder – not
an object. The InfoStore can take on responsibility for finding matching articles; it will
just use a group of member functions to do this.

Lists? Use as needed. The program will hold in memory just single index records,
single queries. Most of the data are left in the files. The only large collection will be
the words of the vocabulary. We can add a list (or dynamic array) if needed.

Bitmap? Yes. We can reuse class Bitmap from Chapter 19. An index entry will
contain a bitmap.

IndexEntry? Plausible. If we define an IndexEntry class we have a place to put
related behaviours like checking for matches with other Bitmaps that represent queries.
An IndexEntry will own a Bitmap and a long integer to record the location of an article.
It can read itself and write itself to file. It can be built up by telling it to set concept
bits. Class IndexEntry seems to earn its way.

The "Vocabulary" object will create some hash table data structure. But this
probably would not exist as an independently defined class. If you had a class library
with a "reusable HashTable" you might proceed differently. However, reusable
HashTables are not common. HashTable structures tend to be purpose built for specific
applications with minor variations to adapt to special needs.

The most plausible classes are illustrated in Figure 22.9. As in the RefCards
example, most are "fuzzy blob" classes because we haven't really defined what any do
or own. This time, class Bitmap is the exception. Once again, because it is a known
reusable class it can be shown with firmly defined boundaries.

In this example, the preliminary classes shown in Figure 22.9 did become the final
classes used in the implementation. However, it would not be unusual for changes to be
made during the later more detailed design steps.

News Articles?

ArticleFinder?

Don't go confusing a
function (verb) with
an object (noun)!

Lists and collection
classes

Bitmap

IndexEntry

HashTable?

762 A World of Interacting Objects

IndexEntry

Owns:
 a bitmap,
 a file location
Does:
 File read, write
 set bits
 compare with other
 …

InfoStore

Owns:
 details of files
 Vocabulary object
 data for search request
Does:
 Add article,
 Find article,
 organize changes to
 vocab
 ?

UserInteraction

Owns:
 an InfoStore
Does:
 Run,
 GetCommand
 ?

Bitmap

SetBit()
ClearBit()
…

array of
unsigned
longs

Vocabulary

Owns:
 words
 hash table
Does:
 File read, write
 lookup word
 add word
 …

Figure 22.9 First idea for classes for InfoStore example.

22.2.2 Design and Implementation of the Vocabulary class

As in the previous example, our next task is to elaborate these initial ideas of classes.
Once again, this will involve using scenarios to examine possible interactions among
objects. Although the processing steps involved may be more elaborate, the actual
patterns of interaction are more limited in this example.

This example does illustrate another aspect of the use of objects. An object-based
approach often makes it possible to design and implement parts of a program in total

Information Store Example: Design and Implementation of Vocab 763

isolation. Once the parts have been made to work, you fit them together to make a
whole. It is just the same process as we have been doing with "reusable classes" like
DynamicArray, except that the classes developed will only be "used" in a test context
and then "reused" in the final program product.

Separate development of parts is of great practical importance. Most programs are
built by teams. It is obviously more practical for individual team members to work on
clearly separate parts. Separate development helps even if a single programmer is
developing the system. Separate development means that the programmer is writing,
and testing, two or more simple programs rather than one larger more complex
program.

The "Vocabulary" object represents a fairly substantial part of the program. It owns
quite a lot of data in varied forms. It is certainly going to own the actual vocabulary
entry items (concept number and keyword string) and a hashtable structure allowing
fast lookup. It may own other data. It is going to have to do things like add words to its
collection and lookup words to see if they are already in the collection. However, it
doesn't need services of other objects and probably it is only the InfoStore object that
ever requests actions by the Vocabulary object. Thus, it is a good candidate for
separate development.

We have to start by examining scenarios that focus on use of the Vocabulary object.
Together these will define the "public interface" for a Vocabulary class. Once this has
been defined, separate development is possible. The design and implementation of the
Vocabulary class can be completed and verified using a little test program that exploits
the same public interface.

So, what does a Vocabulary object (or, more briefly, a Vocab object) get asked to
do? Firstly, there will be file input and output. Figures 22.10 and 22.11 illustrate
plausible scenarios. Activity will start with the user telling the UserInteraction
object to "open" an InfoStore. This will result in an "open store" request being passed
to the InfoStore object. We can ignore most of the activity of InfoStore::
OpenStore() for now; it will involve getting a "base name" from the user and then
opening of all three files. (Inconsistencies such as only one or two files existing will
terminate the program.) The scenario in Figure 22.10 picks up at the point where the
files have all been opened successfully. The InfoStore object will ask the
Vocabulary object to load its data from the already opened vocab-file.

The first item in the file might as well be an integer giving the number of words in
the vocabulary. There could be a few thousand words. We want to allow for a few
hundred concepts and each concept might be represented by several different keywords
in the news articles. So we can expect hundreds, possibly thousands, of
keyword/concept number pairs.

We will need something to store these data. As noted earlier, we might use
instances of some class Word. But at least for the present it appears that we could make
do with a simple struct like the VocabItem used in the earlier simpler version of the
program.

Focus on isolable
Vocabulary object

Scenarios for file
input and output

VocabItem struct

764 A World of Interacting Objects

UserInteraction
object

InfoStore
object

Vocabulary
object

VocabItem
objects!

OpenStore()

+
Load()

loop in
Load()

DynamicArray
object

Append()

InsertIntoHashTable()

Figure 22.10 Object interactions while loading a vocabulary file.

A VocabItem struct will have a char* pointer and an integer. Function
Vocabulary::Load() can have a loop in which it creates VocabItems. If these are
just simple structures, then the Vocab object better do the work of reading their data. It
reads a word into a temporary buffer. A new character array can be created (this
operation is not shown in Figure 22.10) and the word gets copied into the new array.
The character array's address can be stored in the new VocabItem along with the integer
concept number also read from file.

We have to store the complete collection of words. We will have to provide a
service like "list all the words with their concept numbers", and "list all words
associated with concept number …". So, we will be working sequentially through the
collection.

For this collection we can obviously use an instance of class DynamicArray; it can
be a data member in the Vocab object. Once a VocabItem has been created and its data
fields filled in, it can be added to the dynamic array. This is shown in Figure 22.10.

We also need the fast lookup version. This will be a hash table of pointers to the
same VocabItems. The array used for hash address will have to be larger than the
maximum number of keywords we expect. We had better arrange to have it created in
the constructor for class Vocab. Once we have read a VocabItem, we have to add it to
the hash table in addition to the main dynamic array. In Figure 22.10, this is illustrated
as the call to InsertIntoHashTable(). Obviously, this is a non-trivial process. Later
it will get broken down using a "top down functional decomposition" approach. This
more detailed design step will add some other private member functions to class Vocab.

Figure 22.11 illustrates those parts of a Close() operation that involve the Vocab
object. It will loop, getting the VocabItems from its array and writing their contents to
file. It would be worthwhile checking whether the vocabulary has been changed; there

VocabItems

A dynamic array to
store the VocabItems

Separate hash array

Information Store Example: Design and Implementation of Vocab 765

is no need to spend time rewriting the file if the existing file is still valid. Class Vocab
should have some boolean or integer indicator, fChanged , that gets set when words are
added. If this is not set, the write to file step can be omitted. It is possible that another
lot of data might get loaded into the same Vocab object, so once the current data are
finished with the arrays should be cleared and the existing VocabItems should be
deleted.

UserInteraction
object

InfoStore
object

Vocabulary
object

VocabItem
objects!

Close()
Save()

loop in
Save()

DynamicArray
object

Nth()

delete

Remove()

loop in
Save()

Figure 22.11 Object interactions while saving to a vocabulary file.

So far, we seem to have:

class Vocab {
public:

Vocab(?);
/*
File support
*/
void Load(fstream& in);
void Save(fstream& out);
/*
Status
*/
void ReportStatus() const;

…
private:

struct VocabItem {
short fCNum;
char* fWord;
… // Maybe other data
};

void InsertIntoHashTable(VocabItem*);

766 A World of Interacting Objects

int fNumWords;
int fNumConcepts;
int fChanged;

VocabItem **fHashTable;

DynamicArray fTbl;
…

};

Here it has been assumed that VocabItem is essentially a private struct used only by
class Vocab. It would be useful for the Vocab object to maintain counts of the number
of keywords and concepts that it had defined; hence data members like fNumWords. A
ReportStatus() member function might be useful. It could print out details of the
number of keywords and the number of concepts.

The hash table is an array of pointers to VocabItems. Since it is a dynamically
allocated structure located somewhere in the heap, the type of fHashTable is pointer to
(an array of) pointer(s) to VocabItems, or VocabItem**. (This is as discussed
previously in Chapters 20 and 21.)

Now that we can load a Vocab object from a disk file, what should we do with it?
The UserInteraction object will offer a basic menu of commands like "do search",

"do addition of article", and "do vocabulary operations". These will results in requests
to the InfoStore object to do the search, or addition, or organize vocabulary options.
In the case of vocabulary modifications, the InfoStore object will probably present the
user with a kind of submenu. The commands will be things like:

• Concept
Add new concept by giving the first keyword. (The Vocab object should allocate a
new concept number).

• Word
Add another word for an existing concept. The user would then have to enter the
concept number and the new keyword (system should check the number is in
range).

• List
List all concepts or words. There would have to be another prompt to find whether
the user want a printout showing all words, or just those associated with a
particular concept number (or, maybe, a list arranged by concept number).

• Test
Test whether word is associated with a concept. This is really just a "lookup"
operation on a word provided by the user.

The keyword/concept-number idea is not very well defined. Really, the only difference
between adding a concept and adding an alternative keyword is that for a "concept" the

What else might a
Vocab object do?

InfoStore command
options involving a

Vocab object

Information Store Example: Design and Implementation of Vocab 767

Vocab object selects the next possible concept number whereas for a keyword the user
has to specify an existing concept number.

The Vocab object could check that the user doesn't request a new concept or
keyword and then enter a word that already exists. However, the user can do this check
anyway by using the Test option to check a word before trying to enter it.

These different tasks involve three basic patterns of interactions among the objects.
None seem sufficiently elaborate to merit an object interaction diagram.

The first pattern is a "creational pattern" which will get used for the Concept and
Word commands. The InfoStore object gets the necessary data from the user (a text
string, and in the case of the Word command the input will also contain a concept
number). The InfoStore invokes member functions Vocab::AddNewConcept() or
Vocab:: AddExtraWord(). These functions build a new VocabItem, and then add it to
both the hash table and the dynamic array. The functions had better return integer error
codes. There will be a limit on the number of concepts; there may be other constraints
that could cause these operations to fail.

The InfoStore object had better check the validity of any concept number entered
with an extra keyword. It can pass the number entered by the user to the Vocab object
to check; this could be done before any call to AddExtraWord(). So class Vocab had
better provide a CheckConceptNum() member function.

The additional parts of class Vocab's public interface identified by considering these
interactions are:

int Vocab::CheckConceptNum(int conceptnum) const;
int Vocab::AddExtraWord(const char aWord[], int conceptnum);
int Vocab::AddNewConcept(const char firstWord[]);

The various suboptions under List would all be handled by the InfoStore object
asking the Vocab object to perform a specialized listing operation. The Vocab object
would work using a loop that looks at successive VocabItems from its dynamic array
and prints the appropriate ones. Listing all words is easy; the loop in a ListWords()
function simply prints every VocabItem. A list of all VocabItems associated with a
given concept number requires only an extra test and the same basic loop structure; this
can be handled using a Vocab::ListConcept(int conceptnum) member function.
Listing the keywords for each concept in turn could be handled by a function,
ListAllConcepts(), that has a loop working through all concept numbers calling the
ListConceptNum() function for successive numbers. Of course this means running
through the array many times. This may be a bit costly, but there is no need to look for
more efficient schemes, like sorting by concept number, because the execute-time is
going to be determined almost entirely by the printing processes. More elaborate
schemes would just add code but not produce any noticeable change in performance.

The "listing" options require the following additional functions:

void Vocab::ListConcept(int conceptnum) const;
void Vocab::ListAllConcepts() const;

Creational patterns
for VocabItems

Iterating through the
dynamic array

768 A World of Interacting Objects

void Vocab::ListWords() const;

The Test command will require that the Vocab object identify the concept number
associated with a given keyword. It will need a function like:

void Vocab::IdentifyConcept(const char aWord[]) const;

This will print details of the concept number, or report that the keyword is not known.
The Vocab object will also be used when generating index records for new articles

and creating queries. Probably, both these requests will come from the InfoStore
object. They require the same function, it will be given the word to look up, and will
return an integer concept number (a code like -1 could be used to indicate that the word
is not defined).

int Vocab::Lookup(const char aWord[]) const;

Of course, at least one Vocab object gets created so a constructor had better be
defined. It would probably be useful if the program could specify a default size for the
vocabulary. Other arguments for the constructor might be identified later.

If all the interactions involving Vocab objects have been identified, then we have
completely characterised the public interface for the class.

class Vocab {
public:

Vocab(int VocabSize);
/*
File support
*/
void Load(fstream& in);
void Save(fstream& out);
/*
Status
*/
void ReportStatus() const;
int CheckConceptNum(int conceptnum) const;

/*
Checking and adding words
*/
int Lookup(const char aWord[]) const;
int AddExtraWord(const char aWord[], int conceptnum);
int AddNewConcept(const char firstWord[]);
/*
Getting info on concepts
*/
void ListConcept(int conceptnum) const;
void ListAllConcepts() const;
void IdentifyConcept(const char aWord[]) const;

Looking up a word in
the hashtable

Other interactions
involving Vocab

object

Completing the
public interface

Information Store Example: Design and Implementation of Vocab 769

void ListWords() const;
private:

…
};

It is now possible to complete the design, implementation and testing of this class.
There is no need to build an InfoStore class. A simple interactive test program can
easily be written to exercise the various member routines.

Detailed design, implementation, and test of class Vocab

What remains?
The remaining design work will involve minor choices on detailed representation of

the data and probably some further functional decomposition for the more elaborate
member functions.

The index entries for the file are to use class Bitmap. This allows chosen bits to be
tested. It stores 512 bits, numbered 0…511. The number of concepts should be limited
to 512. Internally, concept numbers should be represented by integers in the range
0…511 but it would probably be best if the user saw these as 1…512 (this means that
there will have to be conversions on input and output).

The argument for class Vocab's constructor can be used to define the initial size for
the dynamic array (this will involve a minor C++ feature not previously illustrated). By
default, the dynamic array only grows by 5 elements; that will be too small, a larger
increment should be defined, maybe 25% of the initial size.

We don't want the hash table becoming full. It will probably be worthwhile defining
a maximum size for the vocabulary (some multiple of the initial size) and refusing to
add words once this size is reached. If the hash table is made slightly larger, we can
guarantee that it never becomes full. The entries in the hashtable will either be NULL or
pointers to VocabItems created in the heap and also referenced from the main dynamic
array.

Most of the functions should be straightforward. The listing functions just involve
loops accessing successive VocabItems in the dynamic array. The hashtable functions
(Test(), Lookup(), AddExtraWord(), and AddNewConcept()) will use code similar to
that illustrated earlier in Chapters 18 and 20.

Hash keys are going to have to be computed for the various strings. The code will
be the same as that illustrated previously (Section 18.2.1) but it should now take the
form of a private member function for class Vocab:

unsigned long Vocab::HashString(const char str[]) const;

Although a good hashing function, it is relatively expensive because of its loop through
all the characters in a string. It might be worth saving the hash keys in the VocabItems.

Concept numbers

Array sizes

Another private
member function

770 A World of Interacting Objects

This would avoid the need to recompute the keys for all the words when the files are
reloaded. Consequently, we might redefine VocabItem as follows:

struct Vocab::VocabItem {
unsigned long fKey;
short fCNum;
char* fWord;

};

Implementation

The constructor has the following form

Vocab::Vocab(int vocabsize) : fTbl(vocabsize, vocabsize/4)
{

fNumWords = fNumConcepts = fChanged = 0;
fTblSize = 5*vocabsize;
fMaxWords = 4*vocabsize;
fHashTable = new VocabItem* [fTblSize];
for(int i=0;i < fTblSize; i++)

fHashTable[i] = NULL;
}

The bit in bold illustrates the extra feature of C++ – initialization of data members that
are instances of classes with their own constructors.

We have already had classes that had data members that were instances of other
classes; after all, in the RefCards example, the CardCollection object had a
DynamicArray. But in the previous examples we have been able to rely on default
constructors. The default constructor for a DynamicArray gives it ten elements, so
CardCollections start with an array of size ten. With Vocab objects, we want the
DynamicArray to start at some programmer specified size, so we can't just leave it to
the default constructor.

C++ allows you to pass arguments to the constructors for any data members that
require such initialization. These data member constructors get executed prior to the
body of the class's own constructor. They have to be specified as shown above. They
are separated from the argument list of the constructor by a colon (:), and are listed
before the opening { bracket of the body.

In this example, the fTbl data member (the DynamicArray) is initialized using the
DynamicArray(size, increment) constructor.

The hash table is made 25% larger than the maximum number of words. Thus it can
never be more than 80% full and so the simple linear probing mechanism will work
quite satisfactorily. The element of the hash table need to be initialized to NULL.

The Load() and Save() functions are as follows:

void Vocab::Load(fstream& in)

Constructor

Data members that
are instances of other

classes

Data members that
have their own

constructors

File I/O

Information Store Example: Design and Implementation of Vocab 771

{
fChanged = fNumWords = fNumConcepts = 0;
in >> fNumWords;
if(in.eof()) { in.clear(); return; }
if(fNumWords > fMaxWords) {

cout << "Problems with file. Seems to have too many"
"words." << endl;

exit(1);
}

in >> fNumConcepts;
if(fNumConcepts >= kMAXCONCEPTS) {

cout << "Bad data in file." << endl;
exit(1);
}

for(int i=0; i < fNumWords; i++) {
VocabItem *v = new VocabItem;
if(!in.good())break;
in >> v->fKey >> v->fCNum;
char lword[100];
in >> lword;
v->fWord = new char[strlen(lword) + 1];
strcpy(v->fWord, lword);
fTbl.Append(v);
InsertIntoHashTable(v);
}

if(!in.good()) {
cout << "Sorry, problems reading vocab file. "

"Giving up" << endl;
exit(1);
}

}

The file used for the vocabulary is really a simple text file. Consequently, a user may
edit it with some standard editor or word processor. The Load() routine has to do
some checking to validate the input. The main part of Load() is the loop where the
new VocabItem structs are created, their data are read in, and they are then added to
both the dynamic array and the hash table.

Function Save() is called when the program has finished using the current data in
the Vocab object. If changed, the updated data should be saved to file. All existing data
structures have to be cleaned out.

void Vocab::Save(fstream& out)
{

if(fChanged != 0) {
out << fNumWords << " " << fNumConcepts << endl;
for(int i=1;i<= fNumWords; i++) {

VocabItem *v = (VocabItem*) fTbl.Nth(i);
out << v->fKey << " " << v->fCNum << " " <<

v->fWord << endl;

Checks on file
contents

Loop creating
VocabItems

Add VocabItems to
both arrays

772 A World of Interacting Objects

}
}

for(int j =0; j < fTblSize; j++) fHashTable[j] = NULL;
for(j = fNumWords; j> 0; j--) {

VocabItem *v = (VocabItem*) fTbl.Remove(j);
delete [] v->fWord; // Get rid of the string
delete v; // and the structure
}

fChanged = fNumWords = fNumConcepts = 0;
}

Tidying up is hard work!
Functions like ReportStatus() (print details of number of words and concepts),

and CheckConceptNum(int num) (check value against fNumConcepts) are all trivial
so their code is not shown.

The listing functions are generally similar, ListConcept() is shown here as a
representative. After checking its argument, it has a loop that works through successive
elements of the DynamicArray (request fTbl.Nth(i) returns the i-th element). The
VocabItem accessed via the array is checked, and if it is associated with the required
concept its string is printed. (The code assumes that the conceptnum argument is
defined in the internal 0..N-1 form rather than the 1…N form used in communications
with the user.)

void Vocab::ListConcept(int conceptnum) const
{

if((conceptnum < 0) || (conceptnum >= fNumConcepts)) {
cout << "No such concept number." << endl;
return;
}

/*
As output for user, change to user-numbering of concepts
(1...N) rather than internal 0...N-1.
*/
cout << "Words mapped onto concept: #" << (conceptnum+1)

<< endl;
for(int i = 1; i <= fNumWords; i++) {

VocabItem *v = (VocabItem*) fTbl.Nth(i);
if(v->fCNum == conceptnum) cout << v->fWord << endl;
}

}

The functions that extend the vocabulary are:

int Vocab::AddExtraWord(const char aWord[], int conceptnum)
{

if(fNumWords == fMaxWords)
return 0;

fNumWords++;
fChanged = 1;

Simple access
functions

Listing functions

Vocabulary extension

Information Store Example: Design and Implementation of Vocab 773

VocabItem *v = new VocabItem;
v->fCNum = conceptnum;
v->fKey = HashString(aWord);
v->fWord = new char[strlen(aWord) + 1];
strcpy(v->fWord, aWord);

fTbl.Append(v);
InsertIntoHashTable(v);
return 1;

}

int Vocab::AddNewConcept(const char firstWord[])
{

if((fNumConcepts == kMAXCONCEPTS) ||
(fNumWords == fMaxWords)) return 0;

AddExtraWord(firstWord, fNumConcepts);
fNumConcepts++;
return 1;

}

If the vocabulary is not already full, AddExtraWord() creates a new VocabItem, fills it
with the given data and adds it to the hash table and the dynamic array. Function
AddNewConcept() uses AddExtraWord() while providing the concept number; the
count of concepts is then updated. These functions mark the vocabulary as changed so
that a later call to Save() will result in transfer to disk.

The code for the hash functions can be based on that in earlier examples. A
representative function from this group is InsertIntoHashTable(). This simply
reworks earlier hash table insertion code.

void Vocab::InsertIntoHashTable(VocabItem* v)
{

unsigned long k = v->fKey;
k = k % fTblSize;
int pos = k;
int startpos = pos;

for(;;) {
if(fHashTable[pos] == NULL) {

fHashTable[pos] = v;
return;
}

/*
Shouldn't get duplicates.
Maybe should report this as an error.
*/
if(0 == strcmp(v->fWord, fHashTable[pos]->fWord))

return;

pos++;
if(pos >= fTblSize)

Calculate and save
hash key

Hash functions

774 A World of Interacting Objects

pos -= fTblSize;
if(pos == startpos) {

/*
OOPS! This should never happen.
The hash table should never become full; entry
of words is supposed to be restricted so max
80% full.
*/
cout << "Error in hashing functions of Vocab."

<< endl;
exit(1);
}

}
}

Test

With class Vocab defined, we need a test program. This will simply be another of those
small interactive program where the user is given a menu of commands like "add a
word", "list concept" and so forth. Small auxiliary routines will prompt the user for any
necessary data and invoke the appropriate operations on an instance of class Vocab.

This "scaffolding" code belongs with the Vocab class and should be considered as
part of the class's documentation.

Part of the main() function of this test program is:

…
#include "Vocab.h"

Vocab gv(1000);

…

int main()
{

fstream testfile("testfile", ios::in | ios::out);
gv.Load(testfile);
gv.ReportStatus();
int done = 0;
for(; ! done ;) {

cout << "Enter command : ";
char ch;
cin >> ch;
ch = tolower(ch);
switch(ch) {

case 'q': done = 1; break;
case 'c': AddConcept(); break;
case 'l': List(); break;
case 'w': AddWord(); break;

Information Store Example: Design and Implementation of Vocab 775

case 't': TestWord(); break;
case '?': cout << "Commands are" << endl;

cout << "\tl List all concepts or words." << endl;
…
cout << "\tq Quit" << endl;
break;

default:
cout << "? Unrecognized command " << ch << endl;
break;
}

}
gv.Save(testfile);
testfile.close();
return 0;

}

An example of the auxiliary functions needed is:

void AddWord()
{

cout << "Enter concept number for which you want an"
"additional keyword : ";

int n;
cin >> n;
/*
convert from user 1..N representation to 0..N-1
*/
if(!gv.CheckConceptNum(n-1)) {

cout << "That number doesn't correspond to a "
"defined concept." << endl;

return;
}

cout << "Enter extra keyword : ";
char aWord[40];
cin >> aWord;
if(gv.AddExtraWord(aWord,n-1))

cout << "OK, added." << endl;
else cout << "Sorry, vocab. full, can't add." << endl;

}

22.2.3 Other classes in the InfoStore program

With class Vocab completed and tested, development of the rest of the system could
resume. As illustrated in Figure 22.12, the situation has changed. Now class Vocab can
be treated as a predefined "reusable" component.

776 A World of Interacting Objects

IndexEntry

Owns:
 a bitmap,
 a file location
Does:
 File read, write
 set bits
 compare with other
 …

InfoStore

Owns:
 details of files
 Vocabulary object
 data for search request
Does:
 Add article,
 Find article,
 organize changes to
 vocab
 ?

UserInteraction

Owns:
 an InfoStore
Does:
 Run,
 GetCommand
 ?

Bitmap

SetBit()
ClearBit()
…

array of
unsigned
longs

Vocab

hashtable,
counts, …

AddExtraWord()
Lookup()
…

Figure 22.12 Revised model for classes.

Class UserInteraction

Class UserInteraction won't present many problems. This class, and the main()
function, will be similar to the corresponding parts of the previous example. We might
as well use the same main program. So we can expect class UserInteraction to have
the same public interface and parts of the same implementation structure as last time:

class UserInteraction {
public:

UserInteraction();

Information Store Example: Design, other classes 777

void Initialize();
void Run();
void Terminate();

private:
void Help();
char GetCommand();
// and maybe some changed stuff!
…

};

Function Run() will present the user with a menu of options and function Help() will
provide some explanation of the options. There will have to be some additional private
auxiliary member functions that deal with the top level commands (like "Add article")
by doing some validity checks, or getting some data, and then calling an appropriate
member function of the InfoStore object.

This time, class UserInteraction is going to have to own an InfoStore object
rather than a CardCollection object. It doesn't much matter whether it has an
InfoStore data member or an InfoStore* data member. If a pointer data member is
used, as in the RefCards example, the data object can be created in the
UserInteraction constructor. However, this time we will make it an actual
InfoStore object.

In the RefCards example, function UserInteraction::Initialize() opened the
data file, while Terminate() closed the file. You could only move from one RefCard
collection to another by exiting and restarting the program. It might be worth making
operations a little more general.. We could have "Open" and "Close" commands in the
menu offered in Run(). If no set of files is open, the only commands available would
be "Open" and "Quit". If a set of files is open, the commands would be "Quit", "Add
article", "Search", "Change Vocabulary" and "Close". (The prompt for a command
should indicate the system's state; the UserInteraction object should probably have a
data member, fState, to indicate its open/closed state.)

The code for UserInteraction::Run() will have to be along the following lines:

void UserInteraction::Run()
{

int done = 0;
cout << "Enter commands, ? for help" << endl;
for(; !done;) {

if(fState == 0) cout << "(closed) > ";
else cout << "(open) > ";
char command = GetCommand();
switch(command) {

case 'q' : done = 1; break;
case '?' : Help(); break;
case 'a' : DoAdd(); break;
case 'c' : DoClose(); break;
case 'o' : DoOpen(); break;
case 's' : DoSearch(); break;

InfoStore data
member

778 A World of Interacting Objects

case 'v' : DoVocab(); break;
default :

cout << "Command " << command << " not"
"recognized" << endl;

}
}

}

The auxiliary functions like DoSearch() will defer most work to the InfoStore
object:

void UserInteraction::DoSearch()
{

if(fState == 0) {
cout << "You have to have an Information Store open"

<< endl;
cout << "if you want to search!" << endl;
return;
}

fStore.DoSearch();
}

The remaining functions should all be easy to code. There may not be anything to
do in Terminate() and Initialize(). They got included as a move towards a
standard UserInteraction class. These two examples in this chapter with their similar
structure and UserInteraction classes provide, in a very limited way, a model for the
more elaborate programs that can be built with the framework class libraries introduced
in Part V. In those libraries, you will find standardized classes that accept commands
from a user and route these to appropriate data objects.

Classes InfoStore and IndexEntry

InfoStore

The real work in this program is done by InfoStore along with its helpers Vocab and
IndexEntry. Class InfoStore has to deal with a variety of requests from the
UserInteraction object. We know that the Vocab object doesn't need to make
requests to the InfoStore object, and it is pretty unlikely that the IndexEntry objects
will need to ask anything of the InfoStore. Consequently, the class's public interface
will be determined entirely by the needs of the UserInteraction object. We can
therefore sketch it in now:

class InfoStore {
public:

InfoStore(int VocabSize = 1000);
int OpenStore();

Information Store Example: Design, other classes 779

void Close();

void ChangeVocab();
void AddArticle();
void DoSearch();

private:
…
fstream fIndexFile;
fstream fVocabFile;
fstream fDataFile;
Vocab fVocab;
long fNumArticles;
…

};

The public functions are just those called from member functions of UserInteraction.
The private data members shown have already been identified. The InfoStore object
is supposed to own the files, since they are used for both input and output they will be
fstream objects. The InfoStore need a Vocab object; it seems likely that it should
have a count of the number of articles in the files.

There will be many additional private auxiliary member functions. The extra
member functions will get identified as the known functions, like AddArticle(), are
developed using "top-down functional decomposition".

Function OpenStore() has to either successfully open a set of three existing files,
or if none exist it should create a new set of three files. It should terminate the program
if it cannot get a complete set of files. If it is able to open existing files, then this
function should have a call asking the Vocab object to load the VocabItems as
previously discussed.

Function ChangeVocab() will end up very much like the little test program written
to check class Vocab! It will have a similar prompting function that gets user
commands ("add word", "list concept", etc), and similar auxiliary functions to organize
things like the listing of concepts.

The InfoStore object will have to have its own flag data member to indicate
whether the vocabulary has been changed recently. The Vocab object already keeps
track of whether it has been changed at all since its data were loaded, and uses this to
determine whether to save its data when it gets closed. The InfoStore object has
rather different concerns. It must prevent searches of files, or closing of files, if the
index entries haven't been updated to match any changes in the vocabulary.

An InfoStore object should set its flag data member when it asks its Vocab object
to add a word. It should check this flag when asked to search or close files. If its flag is
set, it should first go through all the index records and articles in its files. It has to
repeat the indexing process by reading each article from the InfoStore's main data file,
updating the index entry and rewriting the updated index entry to the index file. The
process is similar to that involved in the addition of a new article as described in more

OpenStore()

ChangeVocab() –
already been written
(more or less)!

Another
VocabChanged flag?

Responsibility for
updating index
entries if vocabulary
changes

780 A World of Interacting Objects

detail below. Once the articles have been reindexed, the InfoStore object can clear its
version of the "vocabulary changed" flag.

Function AddArticle() will start by prompting the user for the name of a file. It
must then copy the content of the article to the end the data file, at the same time
building up an index entry. Each word read during this copying process must be
checked; any that are keywords should cause the new index entry to be updated. The
interactions involved in this process are outlined below.

Function DoSearch() had better start by checking whether the file contains any
articles. If the data files do contains some articles, this member function has to get the
query from the user. Queries consist of three parts. First there is the set of required
concepts. A loop will be used to get the user to enter required keywords (the function
should warn about any words entered that aren't keywords); these will be used to build
up a bitmap of required concepts. The second data item is the minimum number of
concepts that must match. The third item would be another set of keywords (really
concept numbers) that should not be present. Once the query has been assembled, it
must be checked against IndexEntrys read from the index file. Matches result in
display of articles. Again, the interactions are outlined in more detail below.

IndexEntry

The previous slightly simpler version of this program, in Section 18.3, used some ad
hoc structures to represent index entries. Although an index entry is really a composite
involving a bit map and a file location, the previous representation had an array of
unsigned longs and a separate long integer data element. There was no packaging of
the operations on these data, the code was scattered through the other functions. With
classes, we can do better.

We can now have class IndexEntry. This will package the data and related
functions. We know some of the things an IndexEntry must do. An IndexEntry is
going to have to transfer itself to/from file; this is going to be a binary transfer as they
are supposed to be represented as fixed size blocks of bits in the file. An IndexEntry
gets built up – literally bit-by-bit. When an article is processed, the concepts it contains
are identified and the IndexEntry is told to set the corresponding bit in its bitmap. It
also has to be told to note the location of an article.

These known behaviours provide a first outline for class IndexEntry:

class IndexEntry {
public:

IndexEntry();
void Load(fstream& in);
void Store(fstream& out);
void SetBit(int bitnum);
void SetLocation(unsigned long where);
…

private:

AddArticle

DoSearch

Information Store Example: Design, other classes 781

Bitmap fBits;
unsigned long flocation;

};

The Bitmap data member will be an instance of the class developed in Chapter 19;
those Bitmap objects deal with things like clearing all bits, setting individual bits, and
writing bit data to the file. So a lot of an IndexEntry's work can be delegated to the
Bitmap object that it owns.

Class IndexEntry will have some additional responsibilities related to checking
matches with search queries. These will be added later when they have been more
clearly identified.

Adding or re-indexing articles

Figure 22.13 illustrates the interactions among objects when an article is added of its
index entry updated to reflect changes in the vocabulary.

InfoStore
object

IndexEntry
object

Vocabulary
object

SetBit(…)

Lookup(…)

GetWord(…)

ProcessText()

loop in
ProcessText()

Figure 22.13 Object interactions while adding articles to information store.

Class InfoStore will have a ProcessText() private member function that deals
with the detail of the indexing operations. It will have to take as arguments the input
file (could be a text file with a single article or the existing data file), an IndexEntry to
update, and a flag to indicate whether it is copying the data from the file or simply
updating the IndexEntry. The function that calls ProcessText() had better set the
input file so that it is at the correct position for reading (this would be the start of a new
text file, but at the location of an existing article the index entries are being updated).

If it is a new article that is being added to the collection, the IndexEntry should
already have been initialized with all its bits zero, and its fLocation field set to contain
the current end point of the data file (the place where the copy of the new article will
start). Since the vocabulary always expands, the only changes will be new words and

782 A World of Interacting Objects

concepts. Consequently, there is no need to reinitialize the IndexEntry when an article
that is being re-indexed; the existing bits in the index bit map won't change, maybe a
few more bits will get set.

Function ProcessText() will contain a loop that gets words from the file; class
InfoStore had better have another private member function GetWord().

while(GetWord(…) {
int concept = fVocab.Lookup(aWord);
if(concept>=0)

article_ndx.SetBit(concept);
}

The GetWord() function will be similar to the function in Section 18.3; it will need an
extra flag argument to indicate whether the characters are to be copied as well as built
up into words. The "words" get filled into a character array that would be a local
variable of ProcessText().

Each "word" would have to be checked. Hence the call to the Lookup() function of
the Vocab object. If Lookup() returns a valid concept number, the IndexEntry will
have to be told to set this corresponding bit (the call to SetBit()).

The ProcessText() function gets executed in two circumstances. First the
InfoStore object may have been told to add an article. The operations needed in this
situation would be:

Initialize a new IndexEntry, zeroing out its bit map
Make certain data file is positioned so that writes append data

after all existing data
Note current end position in IndexEntry
Call ProcessText (specify data to be copied, input from new

text file)
Write a null character to the data file to mark the end of the

article.
Write the new index entry at the end of the index file.
Update record of number of articles.

Alternatively, the InfoStore object may be fixing up all its index records before doing
a search or closing the files. The operations need in this context would be:

for each article in collection
Load existing index entry
Find where related article starts
Position data file so character read operations begin at

articles
Call ProcessText(specifying no copying, input from data

file)
rewrite updated index entry in its original position in

the index file

Coding a new article

Fixing up existing
index entries after a
vocabulary change

Information Store Example: Design, other classes 783

Class InfoStore will need additional private member functions that organize these
operations.

void InfoStore::CodeArticle(fstream& infile);
void InfoStore::FixupRecords();

Function CodeArticle would be called from the main AddArticle() function that
opens a user-specified file with the additional news article. Function FixupRecords()
would be called the Close() function (to make certain that set of index, vocabulary,
and article files are consistent), and before searches. Obviously, it would start by
testing the InfoStore::fVocabChanged flag variable to determine whether there was
any need to update the files (and it would clear this flag variable once the files had been
remade).

Searches

As noted earlier, the DoSearch() function would have to start by making certain that a
search operation was valid (file contains articles, all files consistent). Then it would
build up the query structure. Finally, it would have a loop that involved checking each
IndexEntry from the index file against the query; articles corresponding to matching
queries would be printed. The code for DoSearch() would be along the following
lines:

if(fNumArticles == 0)
report search not worthwhile, and return

call FixupRecords to make certain files are consistent

Build a Bitmap that represents the set of concepts required

Find minimum number of matches required

Build a second Bitmap representing unwanted concepts

Position index file at start

for each entry in file do
load index entry

test loaded entry against Bitmap representing excluded
concepts, if any present then don't further check

count number of matching concepts in index entry and
Bitmap representing the required concepts

if match at least the required number
print article starting at location in index entry

InfoStore::
DoSearch()

784 A World of Interacting Objects

As usual, this outline implicitly identifies a number of auxiliary functions; these will all
become private member functions of class InfoStore.

There would have to be two auxiliary functions that build Bitmap objects. A
Bitmap for a query must have at least one bit set; so a GetQuery() function would
need to have a loop that kept prompting the user to enter "search terms"; something
along the following lines:

Bitmap e;
prompt for search terms
do {

Input a word
key = fVocab.Lookup(word);
if(key < 0) cout << "(not used)" << endl;
else {

cout << "(Concept #" << key+1 << ")" << endl;
e.SetBit(key);
}

} while (count of concepts in query < 1
or user specifies another keyword);

As shown, the function should identify the concept numbers associated with the words
entered so that the user will know whether a proposed query involves multiple concepts
or whether all the keywords entered happen to map onto a single concept number. Two
more simple private member functions would appear useful – something to input a
word, and something to get a "yes/no" response to a prompt like "Do you want to enter
another word?". When a Bitmap representing a query has been built, another auxiliary
function can prompt the user for the minimum number of matches (it should check the
query Bitmap, if there is only one bit set then there is no need to ask the user).

The function to get excluded words would be generally similar. The loop structure
would be changed slightly because an empty Bitmap is valid in this context.

The extra functions need for class InfoStore could be:

Bitmap InfoStore::GetQuery();
Bitmap InfoStore::GetExclude();
int InfoStore::GetRequiredNum(const Bitmap&);
void InfoStore::InputWord(char aWord[]);
int InfoStore::YesNo();

Searches necessitate some extra member functions in class IndexEntry:

int IndexEntry::CheckNoCommonElements(const Bitmap& bad);
int IndexEntry::CountCommonElements(const Bitmap& good);
unsigned long IndexEntry::Location() const;

The first function verifies that there are no bits in common between the IndexEntry's
own Bitmap and that given as an argument; this is used to filter out articles with

Building a bit map
that represents a

query

Extensions to class
IndexEntry

Information Store Example: Design, other classes 785

excluded keywords. The second checks the number of bits that are in common.
Finally, class IndexEntry must provide read access to the details of the location its
news article. These functions are trivial to implement as all the necessary bit
manipulations are provided by class Bitmap.

22.2.4 Final class design for the InfoStore program

The final designs for classes InfoStore and IndexEntry are shown in Figures 22.14
and 22.15.

class InfoStore

InfoStore(int VocabSize = 1000);

int OpenStore();

void Close();

void ChangeVocab();

void AddArticle();

void DoSearch();

fstream fIndexFile;
fstream fVocabFile;
fstream fDataFile;
Vocab fVocab;
long fNumArticles;
int fVocabChanged;

class name

private data

public interface

constructor

Load/Save Vocab and related

 processing

Main functions used by

 UserInteraction object

TryMakeNewFiles(…);
FixupRecords();

TestWord();
AddWord();

AddConcept();
List();
CodeArticle(…);

ProcessText(…);
GetWord(…);
PrintArticle…);

InputWord(…);
YesNo();

Bitmap GetQuery();
Bitmap GetExclude();
GetRequiredNum(…);

Opening set of three files

Reindexing existing articles

Arranging extensions to Vocab

List details of Vocab

Addition of articles

Handling query

Figure 22.14 Final design for class InfoStore.

786 A World of Interacting Objects

class IndexEntry

IndexEntry();

void Load(fstream& in);

void Store(fstream& out);

void SetBit(int bitnum);

void SetLocation(unsigned long where);

int CheckNoCommonElements(const Bitmap& bad);

int CountCommonElements(const Bitmap& good);

unsigned long Location() const;

Bitmap fBits;
unsigned long flocation;

class name

private data

public interface

constructor

File transfers

Setting data members

Comparisons with Bitmaps

Access to article location

Figure 22.15 Final design for class IndexEntry.

EXERCISES

1. Complete the implementation of the InfoStore program.

